Skip to main content

Advertisement

Log in

Regulation of T cell-associated tissues and T cell activation by RANKL-RANK-OPG

  • Invited Review
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The receptor activator of nuclear factor kappa-B ligand (RANKL)-RANK-osteoprotegerin (OPG) system is critical to bone homeostasis, but genetically deficient mouse models have revealed important roles in the immune system as well. RANKL-RANK-OPG is particularly important to T cell biology because of its organogenic control of thymic development and secondary lymphoid tissues influence central T cell tolerance and peripheral T cell function. RANKL-RANK-OPG cytokine-receptor interactions are often controlled by regulation of expression of RANKL on developing T cells, which interacts with RANK expressed on some lymphoid tissue cells to stimulate key downstream signaling pathways that affect critical tuning functions of the T cell compartment, like cell survival and antigen presentation. Activation of peripheral T cells is regulated by RANKL-enhanced dendritic cell survival, and dysregulation of the RANKL-RANK-OPG system in this context is associated with loss of T cell tolerance and autoimmune disease. Given its broader implications for immune homeostasis and osteoimmunology, it is critical to further understand how the RANKL-RANK-OPG system operates in T cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Walsh MC, Choi Y (2014) Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. Front Immunol 5:511

    PubMed  PubMed Central  Google Scholar 

  2. Takaba H, Takayanagi H (2017) The mechanisms of T cell selection in the thymus. Trends Immunol 38:805–816

    CAS  PubMed  Google Scholar 

  3. Xing Y, Hogquist KA (2012) T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol 4:a006957

    PubMed  PubMed Central  Google Scholar 

  4. Takahama Y, Ohigashi I, Baik S, Anderson G (2017) Generation of diversity in thymic epithelial cells. Nat Rev Immunol 17:295–305

    CAS  PubMed  Google Scholar 

  5. Lopes N, Serge A, Ferrier P, Irla M (2015) Thymic crosstalk coordinates medulla organization and T-cell tolerance induction. Front Immunol 6:365

    PubMed  PubMed Central  Google Scholar 

  6. Taniguchi RT, Anderson MS (2011) The role of Aire in clonal selection. Immunol Cell Biol 89:40–44

    CAS  PubMed  Google Scholar 

  7. Takaba H, Morishita Y, Tomofuji Y, Danks L, Nitta T, Komatsu N, Kodama T, Takayanagi H (2015) Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell 163:975–987

    CAS  PubMed  Google Scholar 

  8. Rossi SW, Kim MY, Leibbrandt A, Parnell SM, Jenkinson WE, Glanville SH, McConnell FM, Scott HS, Penninger JM, Jenkinson EJ, Lane PJ, Anderson G (2007) RANK signals from CD4(+)3(−) inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J Exp Med 204:1267–1272

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Akiyama N, Takizawa N, Miyauchi M, Yanai H, Tateishi R, Shinzawa M, Yoshinaga R, Kurihara M, Demizu Y, Yasuda H, Yagi S, Wu G, Matsumoto M, Sakamoto R, Yoshida N, Penninger JM, Kobayashi Y, Inoue J, Akiyama T (2016) Identification of embryonic precursor cells that differentiate into thymic epithelial cells expressing autoimmune regulator. J Exp Med 213:1441–1458

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Akiyama T, Shimo Y, Yanai H, Qin J, Ohshima D, Maruyama Y, Asaumi Y, Kitazawa J, Takayanagi H, Penninger JM, Matsumoto M, Nitta T, Takahama Y, Inoue J (2008) The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29:423–437

    CAS  PubMed  Google Scholar 

  11. Akiyama N, Shinzawa M, Miyauchi M, Yanai H, Tateishi R, Shimo Y, Ohshima D, Matsuo K, Sasaki I, Hoshino K, Wu G, Yagi S, Inoue J, Kaisho T, Akiyama T (2014) Limitation of immune tolerance-inducing thymic epithelial cell development by Spi-B-mediated negative feedback regulation. J Exp Med 211:2425–2438

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Desanti GE, Cowan JE, Baik S, Parnell SM, White AJ, Penninger JM, Lane PJ, Jenkinson EJ, Jenkinson WE, Anderson G (2012) Developmentally regulated availability of RANKL and CD40 ligand reveals distinct mechanisms of fetal and adult cross-talk in the thymus medulla. J Immunol 189:5519–5526

    CAS  PubMed  Google Scholar 

  13. Roberts NA, White AJ, Jenkinson WE, Turchinovich G, Nakamura K, Withers DR, McConnell FM, Desanti GE, Benezech C, Parnell SM, Cunningham AF, Paolino M, Penninger JM, Simon AK, Nitta T, Ohigashi I, Takahama Y, Caamano JH, Hayday AC, Lane PJ, Jenkinson EJ, Anderson G (2012) Rank signaling links the development of invariant gammadelta T cell progenitors and Aire(+) medullary epithelium. Immunity 36:427–437

    CAS  PubMed  PubMed Central  Google Scholar 

  14. White AJ, Nakamura K, Jenkinson WE, Saini M, Sinclair C, Seddon B, Narendran P, Pfeffer K, Nitta T, Takahama Y, Caamano JH, Lane PJ, Jenkinson EJ, Anderson G (2010) Lymphotoxin signals from positively selected thymocytes regulate the terminal differentiation of medullary thymic epithelial cells. J Immunol 185:4769–4776

    CAS  PubMed  Google Scholar 

  15. Metzger TC, Khan IS, Gardner JM, Mouchess ML, Johannes KP, Krawisz AK, Skrzypczynska KM, Anderson MS (2013) Lineage tracing and cell ablation identify a post-Aire-expressing thymic epithelial cell population. Cell Rep 5:166–179

    CAS  PubMed  Google Scholar 

  16. Hikosaka Y, Nitta T, Ohigashi I, Yano K, Ishimaru N, Hayashi Y, Matsumoto M, Matsuo K, Penninger JM, Takayanagi H, Yokota Y, Yamada H, Yoshikai Y, Inoue J, Akiyama T, Takahama Y (2008) The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29:438–450

    CAS  PubMed  Google Scholar 

  17. Irla M, Hugues S, Gill J, Nitta T, Hikosaka Y, Williams IR, Hubert FX, Scott HS, Takahama Y, Hollander GA, Reith W (2008) Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity. Immunity 29:451–463

    CAS  PubMed  Google Scholar 

  18. White AJ, Lucas B, Jenkinson WE, Anderson G (2018) Invariant NKT cells and control of the thymus medulla. J Immunol 200:3333–3339

    CAS  PubMed  Google Scholar 

  19. Yin C, Pei XY, Shen H, Gao YN, Sun XY, Wang W, Ge Q, Zhang Y (2017) Thymic homing of activated CD4(+) T cells induces degeneration of the thymic epithelium through excessive RANK signaling. Sci Rep 7:2421

    PubMed  PubMed Central  Google Scholar 

  20. Lopes N, Vachon H, Marie J, Irla M (2017) Administration of RANKL boosts thymic regeneration upon bone marrow transplantation. EMBO Mol Med 9:835–851

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Asano T, Okamoto K, Nakai Y, Tsutsumi M, Muro R, Suematsu A, Hashimoto K, Okamura T, Ehata S, Nitta T, Takayanagi H (2019) Soluble RANKL is physiologically dispensable but accelerates tumour metastasis to bone. Nat Metab 1:868–875

    PubMed  Google Scholar 

  22. McCarthy NI, Cowan JE, Nakamura K, Bacon A, Baik S, White AJ, Parnell SM, Jenkinson EJ, Jenkinson WE, Anderson G (2015) Osteoprotegerin-mediated homeostasis of rank+ thymic epithelial cells does not limit Foxp3+ regulatory T Cell development. J Immunol 195:2675–2682

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Akiyama T, Shinzawa M, Qin J, Akiyama N (2013) Regulations of gene expression in medullary thymic epithelial cells required for preventing the onset of autoimmune diseases. Front Immunol 4:249

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cowan JE, Parnell SM, Nakamura K, Caamano JH, Lane PJ, Jenkinson EJ, Jenkinson WE, Anderson G (2013) The thymic medulla is required for Foxp3+ regulatory but not conventional CD4+ thymocyte development. J Exp Med 210:675–681

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Aschenbrenner K, D’Cruz LM, Vollmann EH, Hinterberger M, Emmerich J, Swee LK, Rolink A, Klein L (2007) Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 8:351–358

    CAS  PubMed  Google Scholar 

  26. Lin J, Yang L, Silva HM, Trzeciak A, Choi Y, Schwab SR, Dustin ML, Lafaille JJ (2016) Increased generation of Foxp3(+) regulatory T cells by manipulating antigen presentation in the thymus. Nat Commun 7:10562

    CAS  PubMed  PubMed Central  Google Scholar 

  27. McCarron MJ, Irla M, Serge A, Soudja SM, Marie JC (2019) Transforming growth factor-beta signaling in alphabeta thymocytes promotes negative selection. Nat Commun 10:5690

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Khan IS, Mouchess ML, Zhu ML, Conley B, Fasano KJ, Hou Y, Fong L, Su MA, Anderson MS (2014) Enhancement of an anti-tumor immune response by transient blockade of central T cell tolerance. J Exp Med. https://doi.org/10.1084/jem.20131889

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323

    CAS  PubMed  Google Scholar 

  31. Mueller CG, Hess E (2012) Emerging functions of RANKL in lymphoid tissues. Front Immunol 3:261

    PubMed  PubMed Central  Google Scholar 

  32. Cordeiro OG, Chypre M, Brouard N, Rauber S, Alloush F, Romera-Hernandez M, Benezech C, Li Z, Eckly A, Coles MC, Rot A, Yagita H, Leon C, Ludewig B, Cupedo T, Lanza F, Mueller CG (2016) Integrin-Alpha IIb identifies murine lymph node lymphatic endothelial cells responsive to RANKL. PLoS ONE 11:e0151848

    PubMed  PubMed Central  Google Scholar 

  33. Onder L, Morbe U, Pikor N, Novkovic M, Cheng HW, Hehlgans T, Pfeffer K, Becher B, Waisman A, Rulicke T, Gommerman J, Mueller CG, Sawa S, Scandella E, Ludewig B (2017) Lymphatic endothelial cells control initiation of lymph node organogenesis. Immunity 47:80–92

    CAS  PubMed  Google Scholar 

  34. Withers DR, Hepworth MR (2017) Group 3 innate lymphoid cells: communications hubs of the intestinal immune system. Front Immunol 8:1298

    PubMed  PubMed Central  Google Scholar 

  35. Bando JK, Gilfillan S, Song C, McDonald KG, Huang SC, Newberry RD, Kobayashi Y, Allan DSJ, Carlyle JR, Cella M, Colonna M (2018) The tumor necrosis factor superfamily member RANKL suppresses effector cytokine production in group 3 innate lymphoid cells. Immunity 48:1208–1219

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lycke NY, Bemark M (2012) The role of Peyer’s patches in synchronizing gut IgA responses. Front Immunol 3:329

    PubMed  PubMed Central  Google Scholar 

  37. Georgiev H, Ravens I, Papadogianni G, Halle S, Malissen B, Loots GG, Forster R, Bernhardt G (2018) Shared and unique features distinguishing follicular T helper and regulatory cells of peripheral lymph node and Peyer’s patches. Front Immunol 9:714

    PubMed  PubMed Central  Google Scholar 

  38. Kobayashi N, Takahashi D, Takano S, Kimura S, Hase K (2019) The Roles of Peyer’s patches and microfold cells in the gut immune system: relevance to autoimmune diseases. Front Immunol 10:2345

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Knoop KA, Kumar N, Butler BR, Sakthivel SK, Taylor RT, Nochi T, Akiba H, Yagita H, Kiyono H, Williams IR (2009) RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. J Immunol 183:5738–5747

    CAS  PubMed  Google Scholar 

  40. Nagashima K, Sawa S, Nitta T, Tsutsumi M, Okamura T, Penninger JM, Nakashima T, Takayanagi H (2017) Identification of subepithelial mesenchymal cells that induce IgA and diversify gut microbiota. Nat Immunol 18:675–682

    CAS  PubMed  Google Scholar 

  41. Kimura S, Nakamura Y, Kobayashi N, Shiroguchi K, Kawakami E, Mutoh M, Takahashi-Iwanaga H, Yamada T, Hisamoto M, Nakamura M, Udagawa N, Sato S, Kaisho T, Iwanaga T, Hase K (2020) Osteoprotegerin-dependent M cell self-regulation balances gut infection and immunity. Nat Commun 11:234

    CAS  PubMed  PubMed Central  Google Scholar 

  42. de Lau W, Kujala P, Schneeberger K, Middendorp S, Li VS, Barker N, Martens A, Hofhuis F, DeKoter RP, Peters PJ, Nieuwenhuis E, Clevers H (2012) Peyer’s patch M cells derived from Lgr5(+) stem cells require SpiB and are induced by RankL in cultured “miniguts.” Mol Cell Biol 32:3639–3647

    PubMed  PubMed Central  Google Scholar 

  43. Kimura S, Kobayashi N, Nakamura Y, Kanaya T, Takahashi D, Fujiki R, Mutoh M, Obata Y, Iwanaga T, Nakagawa T, Kato N, Sato S, Kaisho T, Ohno H, Hase K (2019) Sox8 is essential for M cell maturation to accelerate IgA response at the early stage after weaning in mice. J Exp Med 216:831–846

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tahoun A, Mahajan S, Paxton E, Malterer G, Donaldson DS, Wang D, Tan A, Gillespie TL, O’Shea M, Roe AJ, Shaw DJ, Gally DL, Lengeling A, Mabbott NA, Haas J, Mahajan A (2012) Salmonella transforms follicle-associated epithelial cells into M cells to promote intestinal invasion. Cell Host Microbe 12:645–656

    CAS  PubMed  Google Scholar 

  45. Kunimura K, Sakata D, Tun X, Uruno T, Ushijima M, Katakai T, Shiraishi A, Aihara R, Kamikaseda Y, Matsubara K, Kanegane H, Sawa S, Eberl G, Ohga S, Yoshikai Y, Fukui Y (2019) S100A4 protein is essential for the development of mature microfold cells in Peyer’s patches. Cell Rep 29:2823–2834

    CAS  PubMed  Google Scholar 

  46. Suzuki K, Oida T, Hamada H, Hitotsumatsu O, Watanabe M, Hibi T, Yamamoto H, Kubota E, Kaminogawa S, Ishikawa H (2000) Gut cryptopatches: direct evidence of extrathymic anatomical sites for intestinal T lymphopoiesis. Immunity 13:691–702

    CAS  PubMed  Google Scholar 

  47. Knoop KA, Butler BR, Kumar N, Newberry RD, Williams IR (2011) Distinct developmental requirements for isolated lymphoid follicle formation in the small and large intestine: RANKL is essential only in the small intestine. Am J Pathol 179:1861–1871

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Belz GT, Nutt SL (2012) Transcriptional programming of the dendritic cell network. Nat Rev Immunol 12:01–113

    Google Scholar 

  49. Hemmi H, Akira S (2005) TLR signalling and the function of dendritic cells. Chem Immunol Allergy 86:120–135

    CAS  PubMed  Google Scholar 

  50. Ma DY, Clark EA (2009) The role of CD40 and CD154/CD40L in dendritic cells. Semin Immunol 21:265–272

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wong BR, Josien R, Lee SY, Sauter B, Li HL, Steinman RM, Choi Y (1997) TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med 186:2075–2080

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179

    CAS  PubMed  Google Scholar 

  53. Josien R, Wong BR, Li HL, Steinman RM, Choi Y (1999) TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol 162:2562–2568

    CAS  PubMed  Google Scholar 

  54. Josien R, Li HL, Ingulli E, Sarma S, Wong BR, Vologodskaia M, Steinman RM, Choi Y (2000) TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J Exp Med 191:495–502

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Miyahira Y, Akiba H, Katae M, Kubota K, Kobayashi S, Takeuchi T, Garcia-Sastre A, Fukuchi Y, Okumura K, Yagita H, Aoki T (2003) Cutting edge: a potent adjuvant effect of ligand to receptor activator of NF-kappa B gene for inducing antigen-specific CD8+ T cell response by DNA and viral vector vaccination. J Immunol 171:6344–6348

    CAS  PubMed  Google Scholar 

  56. Bachmann MF, Wong BR, Josien R, Steinman RM, Oxenius A, Choi Y (1999) TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. J Exp Med 189:1025–1031

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Padigel UM, Kim N, Choi Y, Farrell JP (2003) TRANCE-RANK costimulation is required for IL-12 production and the initiation of a Th1-type response to Leishmania major infection in CD40L-deficient mice. J Immunol 171:5437–5441

    CAS  PubMed  Google Scholar 

  58. Kool M, van Loo G, Waelput W, De Prijck S, Muskens F, Sze M, van Praet J, Branco-Madeira F, Janssens S, Reizis B, Elewaut D, Beyaert R, Hammad H, Lambrecht BN (2011) The ubiquitin-editing protein A20 prevents dendritic cell activation, recognition of apoptotic cells, and systemic autoimmunity. Immunity 35:82–96

    CAS  PubMed  Google Scholar 

  59. Izawa T, Ishimaru N, Moriyama K, Kohashi M, Arakaki R, Hayashi Y (2007) Crosstalk between RANKL and Fas signaling in dendritic cells controls immune tolerance. Blood 110:242–250

    CAS  PubMed  Google Scholar 

  60. Ashcroft AJ, Cruickshank SM, Croucher PI, Perry MJ, Rollinson S, Lippitt JM, Child JA, Dunstan C, Felsburg PJ, Morgan GJ, Carding SR (2003) Colonic dendritic cells, intestinal inflammation, and T cell-mediated bone destruction are modulated by recombinant osteoprotegerin. Immunity 19:849–861

    CAS  PubMed  Google Scholar 

  61. Habbeddine M, Verthuy C, Rastoin O, Chasson L, Bebien M, Bajenoff M, Adriouch S, den Haan JMM, Penninger JM, Lawrence T (2017) Receptor activator of NF-kappaB orchestrates activation of antiviral memory CD8 T cells in the spleen marginal zone. Cell Rep 21:2515–2527

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Loser K, Mehling A, Loeser S, Apelt J, Kuhn A, Grabbe S, Schwarz T, Penninger JM, Beissert S (2006) Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med 12:1372–1379

    CAS  PubMed  Google Scholar 

  63. Green EA, Choi Y, Flavell RA (2002) Pancreatic lymph node-derived CD4(+)CD25(+) Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity 16:183–191

    CAS  PubMed  Google Scholar 

  64. Totsuka T, Kanai T, Nemoto Y, Tomita T, Okamoto R, Tsuchiya K, Nakamura T, Sakamoto N, Akiba H, Okumura K, Yagita H, Watanabe M (2009) RANK-RANKL signaling pathway is critically involved in the function of CD4+CD25+ regulatory T cells in chronic colitis. J Immunol 182:6079–6087

    CAS  PubMed  Google Scholar 

  65. Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, Tanaka S, Bluestone JA, Takayanagi H (2014) Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 20:62–68

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge grant support in part from the NIH (AR069546, AI125284, AR077526).

Funding

This work was supported in part by grant support from the National Institutes of Health (NIH) (AR069546, AI125284, AR077526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongwon Choi.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, M.C., Choi, Y. Regulation of T cell-associated tissues and T cell activation by RANKL-RANK-OPG. J Bone Miner Metab 39, 54–63 (2021). https://doi.org/10.1007/s00774-020-01178-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-020-01178-y

Keywords

Navigation