Skip to main content

Advertisement

Log in

Updated concept of sarcopenia based on muscle–bone relationship

  • Review Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Sarcopenia is an age-related loss of skeletal muscle mass and strength. It has been widely recognized that low muscle mass was essential in the diagnosis of sarcopenia, whereas recent studies have emphasized the importance of muscle strength. In practice, muscle quality as well as muscle mass might determine the strength and physical performance. A new diagnostic algorithm of sarcopenia has recently been established, in which low muscle strength is a key characteristic factor for the diagnosis of sarcopenia. Although many factors are supposed to be involved in the pathology and development of sarcopenia, precise mechanisms remain to be elucidated. Recent studies have also focused on the crosstalk between muscles and bones, including functional involvement of myokines and osteokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yakabe M, Ogawa S, Akishita M (2015) Clinical manifestations and pathophysiology of sarcopenia. Biomed Sci 1:10–17

    Google Scholar 

  3. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48:16–31

    Article  PubMed  Google Scholar 

  4. Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127:990s–991s

    Article  CAS  PubMed  Google Scholar 

  5. Malmstrom TK, Miller DK, Simonsick EM, Ferrucci L, Morley JE (2016) SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle 7:28–36

    Article  PubMed  Google Scholar 

  6. McGregor RA, Cameron-Smith D, Poppitt SD (2014) It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev Healthspan 3:9

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barbat-Artigas S, Rolland Y, Vellas B, Aubertin-Leheudre M (2013) Muscle quantity is not synonymous with muscle quality. J Am Med Dir Assoc 14:852.e851–852.e857

    Article  Google Scholar 

  8. Tracy BL, Ivey FM, Hurlbut D, Martel GF, Lemmer JT, Siegel EL, Metter EJ, Fozard JL, Fleg JL, Hurley BF (1999) Muscle quality. II. Effects of strength training in 65- to 75-yr-old men and women. J Appl Physiol (1985) 86:195–201

    Article  CAS  Google Scholar 

  9. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW et al (2014) Sarcopenia in Asia: consensus report of the Asian Working Group for sarcopenia. J Am Med Dir Assoc 15:95–101

    Article  PubMed  Google Scholar 

  10. Lee WJ, Liu LK, Peng LN, Lin MH, Chen LK (2013) Comparisons of sarcopenia defined by IWGS and EWGSOP criteria among older people: results from the I-Lan longitudinal aging study. J Am Med Dir Assoc 14:528.e521–528.e527

    Google Scholar 

  11. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB, Shardell MD, Dam TT, Vassileva MT (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 69:547–558

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tamura Y, Ishikawa J, Fujiwara Y, Tanaka M, Kanazawa N et al (2018) Prevalence of frailty, cognitive impairment, and sarcopenia in outpatients with cardiometabolic disease in a frailty clinic. BMC Geriatr 18:264

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hiraoka A, Michitaka K, Ueki H, Kaneto M, Aibiki T et al (2016) Sarcopenia and two types of presarcopenia in Japanese patients with chronic liver disease. Eur J Gastroenterol Hepatol 28:940–947

    Article  PubMed  Google Scholar 

  14. Su Y, Hirayama K, Han TF, Izutsu M, Yuki M (2019) Sarcopenia prevalence and risk factors among Japanese community dwelling older adults living in a snow-covered city according to EWGSOP2. J Clin Med 8:291

    Article  PubMed Central  Google Scholar 

  15. Gumucio JP, Mendias CL (2013) Atrogin-1, MuRF-1, and sarcopenia. Endocrine 43:12–21

    Article  CAS  PubMed  Google Scholar 

  16. Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S (2013) Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol 45:2191–2199

    Article  CAS  PubMed  Google Scholar 

  17. Aniansson A, Hedberg M, Henning GB, Grimby G (1986) Muscle morphology, enzymatic activity, and muscle strength in elderly men: a follow-up study. Muscle Nerve 9:585–591

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Liu F (2014) Tissue-specific insulin signaling in the regulation of metabolism and aging. IUBMB Life 66:485–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sakuma K, Aoi W, Yamaguchi A (2017) Molecular mechanism of sarcopenia and cachexia: recent research advances. Pflugers Arch 469:573–591

    Article  CAS  PubMed  Google Scholar 

  20. Markofski MM, Dickinson JM, Drummond MJ, Fry CS, Fujita S, Gundermann DM, Glynn EL, Jennings K, Paddon-Jones D, Reidy PT, Sheffield-Moore M, Timmerman KL, Rasmussen BB, Volpi E (2015) Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Exp Gerontol 65:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zembron-Lacny A, Dziubek W, Wolny-Rokicka E, Dabrowska G, Wozniewski M (2019) The relation of inflammaging with skeletal muscle properties in elderly men. Am J Mens Health 13:1557988319841934

    PubMed  PubMed Central  Google Scholar 

  22. Meng SJ, Yu LJ (2010) Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci 11:1509–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Snijders T, Parise G (2017) Role of muscle stem cells in sarcopenia. Curr Opin Clin Nutr Metab Care 20:186–190

    Article  CAS  PubMed  Google Scholar 

  24. Garcia-Prat L, Martinez-Vicente M, Perdiguero E, Ortet L, Rodriguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S, Ballestar E, Serrano AL, Sandri M, Munoz-Canoves P (2016) Autophagy maintains stemness by preventing senescence. Nature 529:37–42

    Article  CAS  PubMed  Google Scholar 

  25. Kwon YN, Yoon SS (2017) Sarcopenia: neurological point of view. J Bone Metab 24:83–89

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kawao N, Kaji H (2015) Interactions between muscle tissues and bone metabolism. J Cell Biochem 116:687–695

    Article  CAS  PubMed  Google Scholar 

  27. Wong RMY, Wong H, Zhang N, Chow SKH, Chau WW, Wang J, Chim YN, Leung KS, Cheung WH (2019) The relationship between sarcopenia and fragility fracture-a systematic review. Osteoporos Int 30:541–553

    Article  CAS  PubMed  Google Scholar 

  28. Wagner P, Chapurlat R, Ecochard R, Szulc P (2018) Low muscle strength and mass is associated with the accelerated decline of bone microarchitecture at the distal radius in older men: the prospective STRAMBO study. J Bone Miner Res 33:1630–1640

    Article  PubMed  Google Scholar 

  29. Tanaka KI, Xue Y, Nguyen-Yamamoto L, Morris JA, Kanazawa I, Sugimoto T, Wing SS, Richards JB, Goltzman D (2018) FAM210A is a novel determinant of bone and muscle structure and strength. Proc Natl Acad Sci USA 115:E3759–E3768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee SJ, Lee YS, Zimmers TA, Soleimani A, Matzuk MM, Tsuchida K, Cohn RD, Barton ER (2010) Regulation of muscle mass by follistatin and activins. Mol Endocrinol 24:1998–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kawao N, Morita H, Obata K, Tatsumi K, Kaji H (2018) Role of follistatin in muscle and bone alterations induced by gravity change in mice. J Cell Physiol 233:1191–1201

    Article  CAS  PubMed  Google Scholar 

  32. Maalouf GE, El Khoury D (2019) Exercise-induced irisin, the fat browning myokine, as a potential anticancer agent. J Obes 2019:6561726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C et al (2015) The myokine irisin increases cortical bone mass. Proc Natl Acad Sci USA 112:12157–12162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang J, Valverde P, Zhu X, Murray D, Wu Y, Yu L, Jiang H, Dard MM, Huang J, Xu Z, Tu Q, Chen J (2017) Exercise-induced irisin in bone and systemic irisin administration reveal new regulatory mechanisms of bone metabolism. Bone Res 5:16056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim H, Wrann CD, Jedrychowski M, Vidoni S, Kitase Y et al (2018) Irisin mediates effects on bone and fat via alphaV integrin receptors. Cell 175:1756–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mera P, Laue K, Wei J, Berger JM, Karsenty G (2016) Osteocalcin is necessary and sufficient to maintain muscle mass in older mice. Mol Metab 5:1042–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE (2011) Endocrine regulation of male fertility by the skeleton. Cell 144:796–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sebastian A, Loots GG (2017) Transcriptional control of Sost in bone. Bone 96:76–84

    Article  CAS  PubMed  Google Scholar 

  39. Maurel DB, Matsumoto T, Vallejo JA, Johnson ML, Dallas SL, Kitase Y, Brotto M, Wacker MJ, Harris MA, Harris SE, Bonewald LF (2019) Characterization of a novel murine Sost ER(T2) Cre model targeting osteocytes. Bone Res 7:6

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hesse E, Schroder S, Brandt D, Pamperin J, Saito H, Taipaleenmaki H (2019) Sclerostin inhibition alleviates breast cancer-induced bone metastases and muscle weakness. JCI Insight 5:125543

    Article  PubMed  Google Scholar 

  41. Huang J, Romero-Suarez S, Lara N, Mo C, Kaja S, Brotto L, Dallas SL, Johnson ML, Jähn K, Bonewald LF, Brotto M (2017) Crosstalk between MLO-Y4 osteocytes and C2C12 muscle cells is mediated by the Wnt/β-catenin pathway. JBMR Plus 1:86–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Juffer P, Jaspers RT, Lips P, Bakker AD, Klein-Nulend J (2012) Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes. Am J Physiol Endocrinol Metab 302:E389–E395

    Article  CAS  PubMed  Google Scholar 

  43. Chanet A, Verlaan S, Salles J, Giraudet C, Patrac V, Pidou V, Pouyet C, Hafnaoui N, Blot A, Cano N, Farigon N, Bongers A, Jourdan M, Luiking Y, Walrand S, Boirie Y (2017) Supplementing breakfast with a vitamin D and leucine-enriched whey protein medical nutrition drink enhances postprandial muscle protein synthesis and muscle mass in healthy older men. J Nutr 147:2262–2271

    Article  CAS  PubMed  Google Scholar 

  44. Beaudart C, Buckinx F, Rabenda V, Gillain S, Cavalier E, Slomian J, Petermans J, Reginster JY, Bruyere O (2014) The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab 99:4336–4345

    Article  CAS  PubMed  Google Scholar 

  45. Giallauria F, Cittadini A, Smart NA, Vigorito C (2016) Resistance training and sarcopenia. Monaldi Arch Chest Dis 84:738

    Article  PubMed  Google Scholar 

  46. Beckwee D, Delaere A, Aelbrecht S, Baert V, Beaudart C, Bruyere O, de Saint-Hubert M, Bautmans I (2019) Exercise interventions for the prevention and treatment of sarcopenia. A systematic umbrella review. J Nutr Health Aging 23:494–502

    Article  CAS  PubMed  Google Scholar 

  47. Oktaviana J, Zanker J, Vogrin S, Duque G (2019) The effect of beta-hydroxy-beta-methylbutyrate (HMB) on sarcopenia and functional frailty in older persons: a systematic review. J Nutr Health Aging 23:145–150

    Article  CAS  PubMed  Google Scholar 

  48. Marty E, Liu Y, Samuel A, Or O, Lane J (2017) A review of sarcopenia: enhancing awareness of an increasingly prevalent disease. Bone 105:276–286

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumito Ogawa.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakabe, M., Hosoi, T., Akishita, M. et al. Updated concept of sarcopenia based on muscle–bone relationship. J Bone Miner Metab 38, 7–13 (2020). https://doi.org/10.1007/s00774-019-01048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-019-01048-2

Keywords

Navigation