Skip to main content

Advertisement

Log in

In vitro analysis of bone phenotypes in Col1a1 and Jagged1 mutant mice using a standardized osteoblast cell culture system

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The mouse is a valuable model organism for studying bone biology and for unravelling pathological processes in skeletal disorders. In vivo methods like X-ray analysis, DXA measurements, pQCT and μCT are available to investigate the bone phenotype of mutant mice. However, the descriptive nature of such methods does not provide insights into the cellular and molecular bases of the observed bone alterations. Thus, first-line investigations might be complemented by cell culture-based methods to characterize the pathological processes at the cellular level independent from systemic influences. By combining well-established assays, we designed a comprehensive test system to investigate the cellular and molecular phenotype of primary calvarial osteoblasts in mutant mice compared to wild-type controls as a first-line phenotyping method. The compilation of 9 different quantifiable assays allows assessment of general properties of cell growth and investigation of bone-specific parameters at the functional, protein and RNA level in a kinetic fashion throughout a 3-week culture period, thus maximizing the chance to discover and explain new phenotypes in mutant mice. By analyzing mutant mouse lines for Col1a1 and Jag1 (Delta-Notch pathway) that both showed clear alterations in several bone-related parameters we could demonstrate the usefulness of our cell culture system to discriminate between primary (Col1a1) and secondary effects (Jag1) in osteoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cohen MM Jr (2006) The new bone biology: pathologic, molecular, and clinical correlates. Am J Med Genet A 140:2646–2706

    PubMed  Google Scholar 

  2. Beckers J, Wurst W, de Angelis MH (2009) Towards better mouse models: enhanced genotypes, systemic phenotyping and envirotype modelling. Nat Rev Genet 10:371–380

    Article  PubMed  CAS  Google Scholar 

  3. Hrabe de Angelis MH, Flaswinkel H, Fuchs H, Rathkolb B, Soewarto D et al (2000) Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet 25:444–447

    Article  PubMed  CAS  Google Scholar 

  4. Abe K, Fuchs H, Lisse T, Hans W, Hrabe de Angelis M (2006) New ENU-induced semidominant mutation, Ali18, causes inflammatory arthritis, dermatitis, and osteoporosis in the mouse. Mamm Genome 17:915–926

    Article  PubMed  CAS  Google Scholar 

  5. Lisse TS, Thiele F, Fuchs H, Hans W, Przemeck GK, Abe K, Rathkolb B, Quintanilla-Martinez L, Hoelzlwimmer G, Helfrich M, Wolf E, Ralston SH, Hrabe de Angelis M (2008) ER stress-mediated apoptosis in a new mouse model of osteogenesis imperfecta. PLoS Genet 4:e7

    Article  PubMed  Google Scholar 

  6. Fuchs H, Lisse T, Hans W, Abe K, Thiele F, Gailus-Durner V, Hrabe de Angelis M (2008) Phenotypic characterization of mouse models for bone-related diseases in the German Mouse Clinic. J Musculoskelet Neuronal Interact 8:13–14

    PubMed  CAS  Google Scholar 

  7. Kiernan AE, Ahituv N, Fuchs H, Balling R, Avraham KB, Steel KP, Hrabe de Angelis M (2001) The Notch ligand Jagged1 is required for inner ear sensory development. Proc Natl Acad Sci USA 98:3873–3878

    Article  PubMed  CAS  Google Scholar 

  8. Peck WA, Birge SJ Jr, Fedak SA (1964) Bone cells: biochemical and biological studies after enzymatic isolation. Science 146:1476–1477

    Article  PubMed  CAS  Google Scholar 

  9. Bakker A, Klein-Nulend J (2003) Osteoblast isolation from murine calvariae and long bones. Methods Mol Med 80:19–28

    PubMed  Google Scholar 

  10. Candeias LP et al (1998) The catalysed NADH reduction of resazurin to resorufin. J Chem Soc Perkin Trans 2:2333–2334

    Google Scholar 

  11. Walker JM (1994) The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol Biol 32:5–8

    PubMed  CAS  Google Scholar 

  12. Bessey OA, Lowry OH, Brock MJ (1946) A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J Biol Cem 164:321–329

    CAS  Google Scholar 

  13. Tullberg-Reinert H, Jundt G (1999) In situ measurement of collagen synthesis by human bone cells with a sirius red-based colorimetric microassay: effects of transforming growth factor beta2 and ascorbic acid 2-phosphate. Histochem Cell Biol 112:271–276

    Article  PubMed  CAS  Google Scholar 

  14. Puchtler H, Meloan SN, Terry MS (1969) On the history and mechanism of alizarin and alizarin red S stains for calcium. J Histochem Cytochem 17:110–124

    Article  PubMed  CAS  Google Scholar 

  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  16. Hefley T, Cushing J, Brand JS (1981) Enzymatic isolation of cells from bone: cytotoxic enzymes of bacterial collagenase. Am J Physiol 240:C234–C238

    PubMed  CAS  Google Scholar 

  17. Aronow MA, Gerstenfeld LC, Owen TA, Tassinari MS, Stein GS, Lian JB (1990) Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells. J Cell Physiol 143:213–221

    Article  PubMed  CAS  Google Scholar 

  18. Schulze E, Witt M, Kasper M, Lowik CW, Funk RH (1999) Immunohistochemical investigations on the differentiation marker protein E11 in rat calvaria, calvaria cell culture and the osteoblastic cell line ROS 17/2.8. Histochem Cell Biol 111:61–69

    Article  PubMed  CAS  Google Scholar 

  19. Ortega N, Behonick DJ, Werb Z (2004) Matrix remodeling during endochondral ossification. Trends Cell Biol 14:86–93

    Article  PubMed  CAS  Google Scholar 

  20. Declercq H, Van den Vreken N, De Maeyer E, Verbeeck R, Schacht E, De Ridder L, Cornelissen M (2004) Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials 25:757–768

    Article  PubMed  CAS  Google Scholar 

  21. Ecarot-Charrier B, Glorieux FH, van der Rest M, Pereira G (1983) Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture. J Cell Biol 96:639–643

    Article  PubMed  CAS  Google Scholar 

  22. Bhargava U, Bar-Lev M, Bellows CG, Aubin JE (1988) Ultrastructural analysis of bone nodules formed in vitro by isolated fetal rat calvaria cells. Bone 9:155–163

    Article  PubMed  CAS  Google Scholar 

  23. Stein GS, Lian JB, Owen TA (1990) Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J 4:3111–3123

    PubMed  CAS  Google Scholar 

  24. Stein GS, Lian JB, Stein JL, Van Wijnen AJ, Montecino M (1996) Transcriptional control of osteoblast growth and differentiation. Physiol Rev 76:593–629

    PubMed  CAS  Google Scholar 

  25. Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS (1990) Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143:420–430

    Article  PubMed  CAS  Google Scholar 

  26. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7:683–692

    Article  PubMed  CAS  Google Scholar 

  27. Fedarko NS, Moerike M, Brenner R, Robey PG, Vetter U (1992) Extracellular matrix formation by osteoblasts from patients with osteogenesis imperfecta. J Bone Miner Res 7:921–930

    Article  PubMed  CAS  Google Scholar 

  28. Fedarko NS, D‘Avis P, Frazier CR, Burrill MJ, Fergusson V, Tayback M, Sponseller PD, Shapiro JR (1995) Cell proliferation of human fibroblasts and osteoblasts in osteogenesis imperfecta: influence of age. J Bone Miner Res 10:1705–1712

    Article  PubMed  CAS  Google Scholar 

  29. Xu P, Huang J, Cebe P, Kaplan DL (2008) Osteogenesis imperfecta collagen-like peptides: self-assembly and mineralization on surfaces. Biomacromolecules 9:1551–1557

    Article  PubMed  CAS  Google Scholar 

  30. Boyde A, Travers R, Glorieux FH, Jones SJ (1999) The mineralization density of iliac crest bone from children with osteogenesis imperfecta. Calcif Tissue Int 64:185–190

    Article  PubMed  CAS  Google Scholar 

  31. Garcia T, Roman-Roman S, Jackson A, Theilhaber J, Connolly T, Spinella-Jaegle S, Kawai S, Courtois B, Bushnell S, Auberval M, Call K, Baron R (2002) Behavior of osteoblast, adipocyte, and myoblast markers in genome-wide expression analysis of mouse calvaria primary osteoblasts in vitro. Bone 31:205–211

    Article  PubMed  CAS  Google Scholar 

  32. Choi JY, Lee BH, Song KB, Park RW, Kim IS, Sohn KY, Jo JS, Ryoo HM (1996) Expression patterns of bone-related proteins during osteoblastic differentiation in MC3T3-E1 cells. J Cell Biochem 61:609–618

    Article  PubMed  CAS  Google Scholar 

  33. Gordon JA, Tye CE, Sampaio AV, Underhill TM, Hunter GK, Goldberg HA (2007) Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone 41:462–473

    Article  PubMed  CAS  Google Scholar 

  34. Lynch MP, Stein JL, Stein GS, Lian JB (1995) The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Exp Cell Res 216:35–45

    Article  PubMed  CAS  Google Scholar 

  35. Krantz ID, Piccoli DA, Spinner NB (1997) Alagille syndrome. J Med Genet 34:152–157

    Article  PubMed  CAS  Google Scholar 

  36. de Albuquerque Taveira AT, Fernandes MI, Galvao LC, Sawamura R, de Mello Vieira E, de Paula FJ (2007) Impairment of bone mass development in children with chronic cholestatic liver disease. Clin Endocrinol (Oxf) 66:518–523

    Google Scholar 

  37. Canalis E (2008) Notch signaling in osteoblasts. Sci Signal 1:pe17

    Google Scholar 

  38. Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R, Long F (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14:306–314

    Article  PubMed  CAS  Google Scholar 

  39. Hamrick MW, Skedros JG, Pennington C, McNeil PL (2006) Increased osteogenic response to exercise in metaphyseal versus diaphyseal cortical bone. J Musculoskelet Neuronal Interact 6:258–263

    PubMed  CAS  Google Scholar 

  40. Benjamin M, Hillen B (2003) Mechanical influences on cells, tissues and organs—‘Mechanical Morphogenesis’. Eur J Morphol 41:3–7

    PubMed  CAS  Google Scholar 

  41. Porter RL, Calvi LM (2008) Communications between bone cells and hematopoietic stem cells. Arch Biochem Biophys 473:193–200

    Article  PubMed  CAS  Google Scholar 

  42. Bradley EW, Oursler MJ (2008) Osteoclast culture and resorption assays. Methods Mol Biol 455:19–35

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Reinhard Seeliger, Susanne Wittich and Michael Schulz for their excellent technical assistance and Dr. Uwe Kornak for critical reading of the manuscript and helpful discussions. This work was supported by NGFN + grant 01GS0850 from the German Federal Ministry of Education and Research.

Conflict of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hrabé de Angelis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 323 kb)

About this article

Cite this article

Thiele, F., Cohrs, C.M., Przemeck, G.K.H. et al. In vitro analysis of bone phenotypes in Col1a1 and Jagged1 mutant mice using a standardized osteoblast cell culture system. J Bone Miner Metab 31, 293–303 (2013). https://doi.org/10.1007/s00774-012-0421-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-012-0421-x

Keywords

Navigation