Skip to main content

Advertisement

Log in

Formation of bone-like mineralized matrix by periodontal ligament cells in vivo: a morphological study in rats

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Periodontal ligament (PDL) is a unique connective tissue that not only connects cementum and alveolar bone to support teeth, but also plays an important role in reconstructing periodontal tissues. Previous studies have suggested that PDL cells have osteogenic potential; however, they lack precise histological examinations. Here, we studied bone-like matrix formation by PDL cells in rats using morphological techniques. Rat and human PDL cells exhibited substantial alkaline phosphatase activity and induced mineralization in vitro. RT-PCR analyses showed that PDL cells expressed the osteoblast markers, Runx2, osterix, and osteocalcin. These results suggest that PDL cells share similar phenotypes with osteoblasts. To examine the bone-like matrix formation in vivo, PDL cells isolated from green fluorescent protein (GFP)-transgenic rats were inoculated with hydroxyapatite (HA) disks into wild-type rats. Five weeks after the implantation, the pores in HA disks were occupied by GFP-positive cells. Mineralized matrix formation was also found on the surface of HA pores. At 12 weeks, some of the pores were filled with bone-like mineralized matrices (BLMM), which were positive for the bone matrix proteins, osteopontin, bone sialoprotein, and osteocalcin. Immunohistochemical examination revealed that most of the osteoblast- and osteocyte-like cells on or in the BLMM were GFP-positive, suggesting that the BLMM were directly formed by the inoculated PDL cells. On the pore surfaces, Sharpey’s fiber-like structures embedded in cementum-like mineralized layers were also observed. These results collectively suggest that PDL cells have the ability to form periodontal tissues and could be a useful source for regenerative therapies of periodontal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Novak MJ (2002) Classification of diseases and conditions affecting periodontium. In: Newman MG, Takei HH, Carranza FA (eds) Clinical periodontology. W.B. Saunders Company, Philadelphia, pp 64–73

    Google Scholar 

  2. Merin RL (2002) Results of periodontal treatment. In: Newman MG, Takei HH, Carranza FA (eds) Clinical periodontology. W.B. Saunders Company, Philadelphia, pp 978–985

    Google Scholar 

  3. Laurell L, Gottlow J, Zybutz M, Persson R (1998) Treatment of intrabony defects by different surgical procedures. A literature review. J Periodontol 69:303–313

    PubMed  CAS  Google Scholar 

  4. Ivanovski S, Haase HR, Bartold PM (2001) Expression of bone matrix protein mRNAs by primary and cloned cultures of the regenerative phenotype of human periodontal fibroblasts. J Dent Res 80:1665–1671

    Article  PubMed  CAS  Google Scholar 

  5. Wang HL, Greenwell H, Fiorellini J, Giannobile W, Offenbacher S, Salkin L, Townsend C, Sheridan P, Genco RJ, Research, Science, Therapy Committee (2005) Periodontal regeneration. J Periodontol 76:1601–1622

    Article  PubMed  CAS  Google Scholar 

  6. Beertsen W, McCulloch CAG, Sodek J (1997) The periodontal ligament: a unique, multifunctional connective tissue. Periodontology 13:20–40

    Article  CAS  Google Scholar 

  7. Carranza FA, Bernard GW (2002) The tooth-supporting structures. In: Newman MG, Takei HH, Carranza FA (eds) Clinical periodontology. W.B. Saunders Company, Philadelphia, pp 36–57

    Google Scholar 

  8. Seo B-M, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang C-Y, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  PubMed  CAS  Google Scholar 

  9. Nagatomo K, Komaki M, Sekiya I, Sakaguchi Y, Noguchi K, Oda S, Muneta T, Ishikawa I (2006) Stem cell properties of human periodontal ligament cells. J Periodontal Res 41:303–310

    Article  PubMed  CAS  Google Scholar 

  10. Arceo N, Sauk JJ, Moehring J, Foster RA, Somerman MJ (1991) Human periodontal cells initiate mineral-like nodules in vitro. J Periodontol 62:499–503

    PubMed  CAS  Google Scholar 

  11. Lallier TE, Spencer A, Fowler MM (2005) Transcript profiling of periodontal fibroblasts and osteoblasts. J Periodontol 76:1044–1055

    Article  PubMed  CAS  Google Scholar 

  12. Hosoya A, Ninomiya T, Hiraga T, Zhao C, Yoshiba K, Yoshiba N, Okabe T, Wakitani S, Yamada H, Kasahara E, Ozawa H, Nakamura H (2008) Alveolar bone regeneration of subcutaneously transplanted rat molar. Bone 42:350–357

    Article  PubMed  Google Scholar 

  13. Inoue T, Osada H, Shiigai T, Fujiseki M, Shimono M (1993) An experimental study of osteogenesis by autografted dental pulp, periodontal ligament, and bone marrow in vivo. Bull Tokyo Dent Coll 34:183–190

    PubMed  CAS  Google Scholar 

  14. Akizuki T, Oda S, Komaki M, Tsuchioka H, Kawakatsu N, Kikuchi A, Yamato M, Okano T, Ishikawa I (2005) Application of periodontal ligament cell sheet for periodontal regeneration: a pilot study in beagle dogs. J Periodont Res 40:245–251

    Article  PubMed  Google Scholar 

  15. Hirata A, Nakamura H (2006) Localization of perlecan and heparanase in Hertwig’s epithelial sheath during root formation in mouse molars. J Histochem Cytochem 54:1105–1113

    Article  PubMed  CAS  Google Scholar 

  16. Kaneda T, Miyauchi M, Takekoshi T, Kitagawa S, Kitagawa M, Shiba H, Kurihara H, Takata T (2006) Characteristics of periodontal ligament subpopulations obtained by sequential enzymatic digestion of rat molar periodontal ligament. Bone 38:420–426

    Article  PubMed  CAS  Google Scholar 

  17. Hakamata Y, Tahara K, Uchida H, Sakuma Y, Nakamura M, Kume A, Murakami T, Takahashi M, Takahashi R, Hirabayashi M, Ueda M, Miyoshi I, Kasai N, Kobayashi E (2001) Green fluorescent protein-transgenic rat: a tool for organ transplantation research. Biochem Biophys Res Commun 286:779–785

    Article  PubMed  CAS  Google Scholar 

  18. Inoue H, Ohsawa I, Murakami T, Kimura A, Hakamata Y, Sato Y, Kaneko T, Takahashi M, Okada T, Ozawa K, Francis J, Leone P, Kobayashi E (2005) Development of new inbred transgenic strains with LacZ or GFP. Biochem Biophys Res Commun 329:288–295

    Article  PubMed  CAS  Google Scholar 

  19. Hiraga T, Kizaka-Kondoh S, Hirota K, Hiraoka M, Yoneda T (2007) Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer. Cancer Res 67:4157–4163

    Article  PubMed  CAS  Google Scholar 

  20. Hosoya A, Hoshi K, Sahara N, Ninomiya T, Akahane S, Kawamoto T, Ozawa H (2005) Effects of fixation and decalcification on the immunohistochemical localization of bone matrix in fresh-frozen bone sections. Histochem Cell Biol 123:639–646

    Article  PubMed  CAS  Google Scholar 

  21. Agata H, Asahina I, Yamazaki Y, Uchida M, Shinohara Y, Honda MJ, Kagami H, Ueda M (2007) Effective bone engineering with periosteum-derived cells. J Dent Res 86:79–83

    Article  PubMed  CAS  Google Scholar 

  22. Picinich SC, Mishra PJ, Mishra PJ, Glod J, Banerjee D (2007) The therapeutic potential of mesenchymal stem cells. Cell- and tissue-based therapy. Expert Opin Biol Ther 7:965–973

    Article  PubMed  CAS  Google Scholar 

  23. Mimeault M, Hauke R, Batra SK (2007) Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 82:252–264

    Article  PubMed  CAS  Google Scholar 

  24. Dong J, Kojima H, Uemura T, Kikuchi M, Tateishi T, Tanaka J (2001) In vivo evaluation of a novel porous hydroxyapatite to sustain osteogenesis of transplanted bone marrow-derived osteoblastic cells. J Biomed Mater Res 57:208–216

    Article  PubMed  CAS  Google Scholar 

  25. Noshi T, Yoshikawa T, Ikeuchi M, Dohi Y, Ohgushi H, Horiuchi K, sugimura M, Ichijima K, Yonemasu K (2000) Enhancement of the in vivo osteogenic potential of marrow/hydroxyapatite composites by bovine bone morphogenetic protein. J Biomed Mater Res 52:621–630

    Article  PubMed  CAS  Google Scholar 

  26. Grzesik WJ, Kuzentsov SA, Uzawa K, Mankani M, Robey PG, Yamauchi M (1998) Normal human cementum-derived cells: Isolation, clonal expansion, and in vitro and in vivo characterization. J Bone Miner Res 13:1547–1554

    Article  PubMed  CAS  Google Scholar 

  27. Kawanabe N, Murakami K, Takano-Yamamoto T (2006) The presence of ABCG2-dependent side population cells in human periodontal ligaments. Biochem Biophys Res Commun 344:1278–1283

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants in aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (18592031 to T.H. and 17659582 to H.N.) and a research grant from the Sagawa Foundation for Promotion of Cancer Research (to T.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Hiraga.

About this article

Cite this article

Hiraga, T., Ninomiya, T., Hosoya, A. et al. Formation of bone-like mineralized matrix by periodontal ligament cells in vivo: a morphological study in rats. J Bone Miner Metab 27, 149–157 (2009). https://doi.org/10.1007/s00774-009-0039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-009-0039-9

Keywords

Navigation