Skip to main content

Advertisement

Log in

Synthesis and biological study of new galanthamine-peptide derivatives designed for prevention and treatment of Alzheimers disease

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The Alzheimer’s disease leads to neurodegenerative processes and affecting negatively million people worldwide. The treatment of the disease is still difficult and incomplete in practice. Galanthamine is one of the most commonly used drugs against the illness. The main aim of this work is design and synthesis of new derivatives of galanthamine comprising peptide moiety as well as study of their β-secretase inhibitory activity and the anti-aggregating effect. All new derivatives of galanthamine containing analogues of Leu-Val-Phe-Phe (Aβ17-Aβ20) were synthesized in solution using fragment and consecutive condensation approaches. The new derivatives were characterized by melting points, NMR, and HPLC/MS. They were tested in vitro for β-secretase inhibition activity by means of fluorescent method and were investigated in vitro for anti-aggregation activity on sheep platelet-rich plasma. Although the new compounds do not contain a structural element responsible for the β-secretase inhibition, five of them show high or good β-secretase inhibitory activity between 19.98 and 51.19% with IC50 between 1.95 and 5.26 nM. Four of the new molecules were able to inhibit platelet aggregation between 55.0 and 90.0% with IC50 between 0.69 and 1.36 µM. Four of the compounds were able to inhibit platelet aggregation and two of them have high anti-aggregating effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AcChE:

Acetylcholine esterase

BuChE:

Butyrylcholine esterase

Gal:

Galanthamine

NorGal:

Norgalanthamine

LD50 :

Lethal dose, 50%

PPP:

Platelet poor plasma

PRP:

Platelet-rich plasma

ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

β-APP:

β-Amyloid precursor protein

Aβ:

β-Amyloid peptide

TBTU:

O-(Benzotriazolo-1-yl)-N,N,N,N-tetramethyluronium tetrafluoroborate

DIPEA:

N-Ethyldiisopropylamine

BACE-1 Human:

β-Secretase 1 human recombinant

References

  • Atanasov AT (1994) Effect of water extract of Gaega officinalis L. on human platelet aggregation in vitro. Phytother Res 8:314–316

    Article  Google Scholar 

  • Augelli-Szafran CE, Walker LC, LeVine H III (1999) Amyloid as a target for alzheimer’s disease therapy. Annu Rep Med Chem 34:21–30

    CAS  Google Scholar 

  • Born G (1962) Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 194:927–934

    Article  CAS  PubMed  Google Scholar 

  • Cabrele C, Martinek TA, Reiser O, Berlicki Ł (2014) Peptides containing β-amino acid patterns: challenges and successes in medicinal chemistry. J Med Chem 57:9718–9739

    Article  CAS  PubMed  Google Scholar 

  • Camilleri P, Haskins NJ, Hewlett DR (1994) P-Cyclodextrin interacts with the Alzheimer amyloid P-A4 peptide. FEBS LeTt 341:256–258

    Article  CAS  PubMed  Google Scholar 

  • De La Cruz JP, Pavia J, Bellido I (1988) Effect of trifusal and acetylsalicylic acid on platelet aggregation in human whole blood: influence of red blood cells and leukocytes. Methods Find Exper Clin Pharmacol 10:363–367

    Google Scholar 

  • Friess SL, Durant RC, Whitcomb ER, Reber LJ, Thommesen WC (1961) Some toxicologic properties of the alkaloids galanthamine and securinine. Toxicol Appl Pharmacol 3:347

    Article  CAS  PubMed  Google Scholar 

  • Ghanta J, Shen C-H, Kiessling LL, Murphy RM (1996) A strategy for designing inhibitors of /3-amyloid toxicity. J Biol Chem 271:29525–29528

    Article  CAS  PubMed  Google Scholar 

  • Ghosh AK, Geoffrey B, Cynthia H, Reiko K, Dongwoo S, Hussain KA, Lin H, Loy JA, Chan N, Gerald K, Jacques E, Jordan T (2001) Structure-based design: potent inhibitors of human brain memapsin 2 β-secretase. Med Chem 44(18):2865–2868

    Article  CAS  Google Scholar 

  • Ghosh AK, Kumaragurubaran N, Lin H, Hui L, Hussain KA, Chun-Feng L, Devasamudram T, Vajira W, Robert T, Gerald K, Geoffrey B, Jordan T (2006) Design, synthesis and X-ray structure of protein-ligand comlexes: Important insight into selectivity of Memapsin 2 (β-Secretase) inhibitors. JACS 128:5310–5311

    Article  CAS  Google Scholar 

  • Han SY, Sweeny JE, Bachman ES, Schweiger EJ, Forlony G, Coyle JT, Davis DM, Joullie MM (1992) Chemical and pharmacological characterization of galanthamine, an acetylcholinesterase Inhibitor and its derivatives. A potential application in Alzheimers disease. Eur J Med Chem 27:673–687

    Article  CAS  Google Scholar 

  • Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12(10):383–388

    Article  CAS  PubMed  Google Scholar 

  • Hassard TH (1991) Understanding biostatistics. Copyright © by Mosby-Year Book Inc

  • Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K (1992) Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer’s disease beta A4 peptides. J Mol Biol 228(2):460–473

    Article  CAS  PubMed  Google Scholar 

  • Hom R, Fang L, Mato S, Tung J, Guinn A, Walker D, Davis D, Gailunas A, Thorsett E, Sinha S, Knops J, Jewett N, Anderson J, Varghese J (2003) Design and synthesis of statine-based cell-permeable peptidomimetic inhibitors of human β-Secretase. J Med Chem 46:1799–1802

    Article  CAS  PubMed  Google Scholar 

  • Jaber S, Iliev I, Angelova TS, Nemska V, Sulikovska I, Naydenova E, Georgieva N, Givechev I, Grabchev I, Danalev D (2021) Synthesis, antitumor and antibacterial studies of new shortened analogues of (KLAKLAK)2-NH2 and their conjugates containing unnatural amino acids. Molecules 26(4):898–910. https://doi.org/10.3390/molecules26040898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordis U, Treu M, Hirnschall M, Frohlich J, Crollner L, Kalz B, Kalz T, Kuhnhackl P (2006) Methods for producing Norgalanthamine, as well as isomers, salts and hydrates. There of US Patent 2006/0069251 A1

  • Kellermayer MSZ, Grama L, Karsai A, Nagy A, Kahn A, Datki ZL, Penke B (2005) Reversible mechanical unzipping of amyloid β-fibrils. J Biol Chem 280(9):8464–8470

    Article  CAS  PubMed  Google Scholar 

  • Kirschner DA, Abraham C, Selkoe DJ (1986) Xray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation. Proc Natl Acad Sci USA 83:503–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lansbury PT (1999) Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc Natl Acad Sci USA 96:3342–3344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzo A, Yankner BA (1994) 6-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Nat Acad Sci USA 917:12243–12247

    Article  Google Scholar 

  • Mary A et al (1998) Potent acetylcholinesterase inhibitors: design, synthesis and structure activity relationships of bis-interacting ligands in the galanthamine series. Bioorg Med Chem 6:1835–1850

    Article  CAS  PubMed  Google Scholar 

  • Matharua B, Gibsona BG, Parsons R, Huckerby TN, Moore SA, Cooperb LJ, Allsop RMD, Austena B (2009) Galantamine inhibits β-amyloid aggregation and cytotoxicity. J Neurol Sci 280(1–2):49–58

    Article  CAS  Google Scholar 

  • Molineaux SM, Chin J, Lee JJ, Kelley M, Kubasek W, Wakefield J (1996) 26th Annual meeting society for neuroscience. In: Washington DS USA Poster 651

  • Moncsor M (2005) Diagnosis and treatment of Alzheimer’s disease. Curr Med Chem 5(1):5–13

    Google Scholar 

  • Moore CL, Wolfe MS (1999) Inhibition of beta-amyloid formation as a therapeutic strategy. Exp Opin Ther Patents 9:135–146

    Article  CAS  Google Scholar 

  • Mudher A, Lovestone S (2002) Alzheimer’s disease do tauists and baptists finally shake hands. Trends in Neurosci 25(1):22–26

    Article  CAS  Google Scholar 

  • Naydenova E, Wesselinova D, Staykova S, Danalev D, Dzimbova T (2019) Synthesis, in vitro biological activity and docking of new analogs of BIM-23052 containing unnatural amino acids. Amino Acids 51(9):1247–1257

    Article  CAS  PubMed  Google Scholar 

  • Pallitto MM, Ghanta J, Heinzelman P, Iessling LL, Murphy RM (1999) Recognition sequence design for peptidyl modulators of β-amyloid aggregation and toxicity. Biochemistry 38:3570–3578

    Article  CAS  PubMed  Google Scholar 

  • Parasuraman S, Raveendran R, Kesvan R (2010) Blood sample collection in small laboratory animals. J Pharmacol Pharmacother 1(2):87–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savi P, Pereillo JM, Uzabiaga MF, Combalbert J, Picard C, Maffrand JP, Pascal M, Herbert JM (2000) Identification and biological activity of the active metabolite of Clopidogrel. Thromb Haemost 84:891–896

    Article  CAS  PubMed  Google Scholar 

  • Savini L, Gaeta A, Fattorusso C, Catalanotti B, Campiani G, Chiasserini L, Pellerano C, Novellino E, McKissic D, Saxena A (2003) Specific targeting of acetylcholinesterase and butyrylcholinesterase recognition sites rational design of novel, selective, and highly potent cholinesterase inhibitors. J Med Chem 46:1. https://doi.org/10.1021/jm0255668

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (1997) Alzheimer’s disease: genotypes, phenotypes, and treatments. Science 275:630–631

    Article  CAS  PubMed  Google Scholar 

  • Simmons LK, May PC, Tomaselli KI, Rydel RF, Fuson KS, Brigham EF, Wright S, Ledeburg IN, Becker GW, Brems DN, Li WY (1994) Secondary structure of amyloid beta peptide correlates with neurotoxic activity in vitro. Mol Pharmacol 45:373–379

    CAS  PubMed  Google Scholar 

  • St George-Hyslop PH (2000) Genetic factors in the genesis of Alzheimer’s disease. Ann N Y Acad Sci 924:1–7

    Article  CAS  PubMed  Google Scholar 

  • Talaga P (2001) β-amyloid aggregation inhibitors for the treatment of Alzheimer’s disease: dream or reality? Mini Rev Med Chem 1:175–186

    Article  CAS  PubMed  Google Scholar 

  • Tjernberg L (1997) Molecular basis and pharmacological implicatrons of Alzheimer amyloid β-peptide fibrtl formation. In: PhD thesis, Karolinska Institute, Stockholm, Sweden

  • Tjernberg LO, Nordstedt C et al (1996) Arrest of 6-amyloid fibril formation by a pentapeptide ligand. J Biol Chem 271:8545–8548

    Article  CAS  PubMed  Google Scholar 

  • Tjernberg LO, Nordstedt C et al (1997) Controlling amyloid β-peptide fibril formation with protease stable ligands. J Biol Chem 272:12601–12605

    Article  CAS  PubMed  Google Scholar 

  • Tomiyana T, Endo N et al (1996) Inhibition of amyloid 6 protein aggregation and neurotoxicity by rifampicin. J Biol Chem 271(12):6839–6844

    Article  Google Scholar 

  • Tjernbergl L, Pramanik A, Bjijrling S, Thyberg P, Thyberg J, Nordstedtl C, Berndt K, Tereniusl L, Rigler R (1999) Amyloid B-peptide polymerization studied using fluorescence correlation spectroscopy. Chem Biol 6:53–62

    Article  Google Scholar 

  • Vezenkov L, Georgieva M, Mondeshka D (2007) Design and synthesis of new peptides with expected gama-secretase and aggregation inhibitory activity. In: Proceedings of the 27-th European Peptide Symposium, 2006 Sept. 3–8; Gdansk City University, Poland, pp 92–93

  • Vezenkov LT, Georgieva MG, Danalev DL, Ivanov TB, Ivanova GI (2009) Synthesis and characterization of new galanthamine derivatives comprising peptide moiety. Protein Peptide Lett 16:1024–1028

    Article  CAS  Google Scholar 

  • Vezenkov L, Sevalle J, Danalev D, Ivanov T, Bakalova A, Georgieva M, Checler F (2012) Galantamine-based hybrid molecules with acetylcholinesterase, butyrylcholinesterase and γ-secretese inhibition activities. Curr Alzheimer Res 9:600–605

    Article  CAS  PubMed  Google Scholar 

  • Vezenkov LT, Ilieva L, Danalev DL, Bakalova A, Vassilev DN, Danchev N, Nikolova I (2015) Synthesis of new peptide derivatives of galanthamine designed for prevention and treatment of Alzheimer’s disease. Protein Pept Lett 22(10):913–922

    Article  CAS  PubMed  Google Scholar 

  • Vezenkov LT, Tsekova D, Kostadinova I, Mihaylova R, Vasilev N, Danchev N (2019) Synthesis of new Galantamine-peptide derivatives designed for prevention and treatment of Alzheimer’s disease. Curr Alzheimer Res 16:183–192

    Article  CAS  PubMed  Google Scholar 

  • Vezenkov L, Cena H, Danalev D, Karadjova V, Tsekova D, Vasilev N (2020) New derivarives of galanthamine having peptide fragment. J Chem Technol Metall 55(2):251–260

    CAS  Google Scholar 

  • Vidalus J-L, Calmet F, Bigg D, Carilla A, Stenger A, Chopin P, Briley M (1994) Novel (2-(4-Piperidinyl)ethyl(thio)ureas: synthesis and antiacetylcholinesterase activity. J Med Chem 37(5):689–695

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the Scientific Research Fund of Bulgaria through the project DH 03/8, “Galanthamine’s and 4-aminopyridine’s derivatives containing peptide motif with expected effect on the Alzheimer’s disease and multiple sclerosis”. The work is also realized as a part of National Program “EUROPEAN SCIENTIFIC NETWORKS” of Ministry of Science and Education of Bulgaria, project “Drug molecule” D01-278/05.10.2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dancho L. Danalev.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Ethics approval and consent to participate

The studies were approved by the Bulgarian Food Safety Agency (187, valid until 05. 02. 2003).

Human and animal rights

No humans were used in this research. All animals research procedures followed were in accordance with the standards set forth in the eighth edition of Guide for the Care and Use of Laboratory Animals published by the National Academies Press, Washington, D.C.)

Consent for publication

Not applicable.

Additional information

Handling editor: D. Tsikas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 852 kb)

Supplementary file2 (DOCX 1063 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vezenkov, L.T., Danalev, D.L., Iwanov, I. et al. Synthesis and biological study of new galanthamine-peptide derivatives designed for prevention and treatment of Alzheimers disease. Amino Acids 54, 897–910 (2022). https://doi.org/10.1007/s00726-022-03167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-022-03167-z

Keywords

Navigation