Skip to main content

Advertisement

Log in

Effect of Oaz1 overexpression on goose ovarian granulosa cells

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Ornithine decarboxylase antizyme 1 (OAZ1) regulates both polyamine biosynthesis and transport and acts as a tumor suppressor because of its functions in the regulation of cell proliferation, apoptosis and growth. However, the roles of OAZ1 in the regulation of polyamine metabolism, cell proliferation, apoptosis and hormone receptor expression in granulosa cells (GCs) from geese have not been determined. To define the roles of OAZ1 in primary GCs, we constructed and transfected an Oaz1 overexpression vector with a thymidine deletion into primary GCs. Oaz1 overexpression induced 65 and 30% decreases in the putrescine and spermidine contents, respectively, 225% increase in the spermine content and up-regulated the expression levels of genes associated with polyamine metabolism (but Oaz2). The Ccnd1, Pcna, Bax and Caspase 3 mRNA expression levels in GCs overexpressing Oaz1 were significantly higher than the expression levels in the vehicle group (p < 0.05). Additionally, a slight increase in the E2 concentration in the culture medium and enhanced Er, Fshr and Lhr expression were observed in the GCs 24 h after Oaz1 overexpression (p < 0.05). These data suggested that Oaz1 up-regulated the expression of genes related to polyamine metabolic enzymes and reproductive hormone receptors, disturbed intracellular polyamine homeostasis, and affected the transcription of genes associated to cell proliferation and apoptosis in goose primary GCs. Taken together, our results indicate that modifying polyamine metabolism by Oaz1 may interfere with the expression of genes involved in cell proliferation, apoptosis and responsiveness of ovary toward hormones in goose GCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AZIN:

Ornithine decarboxylase antizyme inhibitor

OAZ:

Ornithine decarboxylase antizyme

ODC:

Ornithine decarboxylase

DFMO:

α-Difluoromethylornithine

SAMDC:

S-adenosylmethionine decarboxylase

SPDS:

Spermidine synthase

SPMS:

Spermine synthase

SSAT:

Spermidine/spermine-N1-acetyltransferase

APAO:

N1-acetylpolyamine oxidase

SMO:

Spermine oxidase

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GC:

Granulosa cell

References

  • Acosta-Andrade C, Lambertos A, Urdiales JL, Sanchez-Jimenez F, Penafiel R, Fajardo I (2016) A novel role for antizyme inhibitor 2 as a regulator of serotonin and histamine biosynthesis and content in mouse mast cells. Amino Acids 48:2411–2421

    Article  CAS  PubMed  Google Scholar 

  • An XP et al (2012) Analysis of differentially expressed genes in ovaries of polytocous versus monotocous dairy goats using suppressive subtractive hybridization. Reprod Domest Anim 47:498–503

    Article  CAS  PubMed  Google Scholar 

  • Bastida CM, Cremades A, Castells MT, Lopez-Contreras AJ, Lopez-Garcia C, Tejada F, Penafiel R (2005) Influence of ovarian ornithine decarboxylase in folliculogenesis and luteinization. Endocrinology 146:666–674

    Article  CAS  PubMed  Google Scholar 

  • Coffino P (2001) Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol 2:188–194

    Article  CAS  PubMed  Google Scholar 

  • Cui PF et al (2016) Polyamine metabolism-based dual functional gene delivery system to synergistically inhibit the proliferation of cancer. Int J Pharm 506:79–86

    Article  CAS  PubMed  Google Scholar 

  • Dewailly D, Robin G, Peigne M, Decanter C, Pigny P, Catteau-Jonard S (2016) Interactions between androgens, FSH, anti-Mullerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update 22:709–724

    Article  PubMed  Google Scholar 

  • Feith DJ, Origanti S, Shoop PL, Sass-Kuhn S, Shantz LM (2006) Tumor suppressor activity of ODC antizyme in MEK-driven skin tumorigenesis. Carcinogenesis 27:1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Feith DJ, Shantz LM, Shoop PL, Keefer KA, Prakashagowda C, Pegg AE (2007) Mouse skin chemical carcinogenesis is inhibited by antizyme in promotion-sensitive and promotion-resistant genetic backgrounds. Mol Carcinog 46:453–465

    Article  CAS  PubMed  Google Scholar 

  • Gilbert AB, Evans AJ, Perry MM, Davidson MH (1977) A method for separating the granulosa cells, the basal lamina and the theca of the preovulatory ovarian follicle of the domestic fowl (Gallus domesticus). J Reprod Fertil 50:179–181

    Article  CAS  PubMed  Google Scholar 

  • Gruendler C, Lin Y, Farley J, Wang T (2001) Proteasomal degradation of Smad1 induced by bone morphogenetic proteins. J Biol Chem 276:46533–46543

    Article  CAS  PubMed  Google Scholar 

  • Hayashi S, Murakami Y, Matsufuji S (1996) Ornithine decarboxylase antizyme: a novel type of regulatory protein. Trends Biochem Sci 21:27–30

    Article  CAS  PubMed  Google Scholar 

  • He H, Kang B, Jiang D, Ma R, Bai L (2014) Molecular cloning and mRNA expression analysis of ornithine decarboxylase antizyme 2 in ovarian follicles of the Sichuan white goose (Anser cygnoides). Gene 545:247–252

    Article  CAS  PubMed  Google Scholar 

  • Huang Y et al (2006) Polyamine analogues down-regulate estrogen receptor alpha expression in human breast cancer cells. J Biol Chem 281:19055–19063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahana C (2009) Antizyme and antizyme inhibitor, a regulatory tango. Cell Mol Life Sci 66:2479–2488

    Article  CAS  PubMed  Google Scholar 

  • Kang B, Guo JR, Yang HM, Zhou RJ, Liu JX, Li SZ, Dong CY (2009) Differential expression profiling of ovarian genes in prelaying and laying geese. Poult Sci 88:1975–1983

    Article  CAS  PubMed  Google Scholar 

  • Kang B, Jiang DM, Bai L, He H, Ma R (2014) Molecular characterisation and expression profiling of the ENO1 gene in the ovarian follicle of the Sichuan white goose. Mol Biol Rep 41:1927–1935

    Article  CAS  PubMed  Google Scholar 

  • Katayama H, Zhou H, Li Q, Tatsuka M, Sen S (2001) Interaction and feedback regulation between STK15/BTAK/Aurora-A kinase and protein phosphatase 1 through mitotic cell division cycle. J Biol Chem 276:46219–46224

    Article  CAS  PubMed  Google Scholar 

  • Keren-Paz A, Bercovich Z, Porat Z, Erez O, Brener O, Kahana C (2006) Overexpression of antizyme-inhibitor in NIH3T3 fibroblasts provides growth advantage through neutralization of antizyme functions. Oncogene 25:5163–5172

    CAS  PubMed  Google Scholar 

  • Kogo H, Johnson DC, Dey SK, Takeo S (1993) A comparison of the effects of estradiol and 2- and 4-hydroxyestradiol on uterine ornithine decarboxylase activity in immature rats. Jpn J Pharmacol 61:65–67

    Article  CAS  PubMed  Google Scholar 

  • Koike C, Chao DT, Zetter BR (1999) Sensitivity to polyamine-induced growth arrest correlates with antizyme induction in prostate carcinoma cells. Can Res 59:6109–6112

    CAS  Google Scholar 

  • Kurian L, Palanimurugan R, Godderz D, Dohmen RJ (2011) Polyamine sensing by nascent ornithine decarboxylase antizyme stimulates decoding of its mRNA. Nature 477:490–494

    Article  CAS  PubMed  Google Scholar 

  • Lefevre PL, Palin MF, Murphy BD (2011) Polyamines on the reproductive landscape. Endocr Rev 32:694–712

    Article  CAS  PubMed  Google Scholar 

  • Lewis JS, Vijayanathan V, Thomas TJ, Pestell RG, Albanese C, Gallo MA, Thomas T (2005) Activation of cyclin D1 by estradiol and spermine in MCF-7 breast cancer cells: a mechanism involving the p38 MAP kinase and phosphorylation of ATF-2. Oncol Res 15:113–128

    CAS  PubMed  Google Scholar 

  • Li WD et al (2015) Involvement of Antizyme Characterized from the Small Abalone Haliotis diversicolor in Gonadal Development. PLoS One 10:e0135251

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim SK, Gopalan G (2007) Antizyme1 mediates AURKAIP1-dependent degradation of Aurora-A. Oncogene 26:6593–6603

    Article  CAS  PubMed  Google Scholar 

  • Limon A, Mamdani F, Hjelm BE, Vawter MP, Sequeira A (2016) Targets of polyamine dysregulation in major depression and suicide: activity-dependent feedback, excitability, and neurotransmission. Neurosci Biobehav Rev 66:80–91

    Article  CAS  PubMed  Google Scholar 

  • Lin Y et al (2002) A novel link between the proteasome pathway and the signal transduction pathway of the bone morphogenetic proteins (BMPs). BMC Cell Biol 3:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu GY et al (2006) Antizyme, a natural ornithine decarboxylase inhibitor, induces apoptosis of haematopoietic cells through mitochondrial membrane depolarization and caspases’ cascade. Apoptosis 11:1773–1788

    Article  CAS  PubMed  Google Scholar 

  • Ma R, Jiang D, Kang B, Bai L, He H, Chen Z, Yi Z (2015) Molecular cloning and mRNA expression analysis of antizyme inhibitor 1 in the ovarian follicles of the Sichuan white goose. Gene 568:55–60

    Article  CAS  PubMed  Google Scholar 

  • Mackintosh CA, Feith DJ, Shantz LM, Pegg AE (2000) Overexpression of antizyme in the hearts of transgenic mice prevents the isoprenaline-induced increase in cardiac ornithine decarboxylase activity and polyamines, but does not prevent cardiac hypertrophy. Biochem J 350(Pt 3):645–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsufuji S, Matsufuji T, Miyazaki Y, Murakami Y, Atkins JF, Gesteland RF, Hayashi S (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80:51–60

    Article  CAS  PubMed  Google Scholar 

  • Newman RM et al (2004) Antizyme targets cyclin D1 for degradation. A novel mechanism for cell growth repression. J Biol Chem 279:41504–41511

    Article  CAS  PubMed  Google Scholar 

  • Ocon-Grove OM, Poole DH, Johnson AL (2012) Bone morphogenetic protein 6 promotes FSH receptor and anti-Mullerian hormone mRNA expression in granulosa cells from hen prehierarchal follicles. Reproduction 143:825–833

    Article  CAS  PubMed  Google Scholar 

  • Pietila M, Dhungana H, Uimari A, Sironen R, Alhonen L (2014) Systemic overexpression of antizyme 1 in mouse reduces ornithine decarboxylase activity without major changes in tissue polyamine homeostasis. Transgenic Res 23:153–163

    Article  CAS  PubMed  Google Scholar 

  • Ramani D, De Bandt JP, Cynober L (2014) Aliphatic polyamines in physiology and diseases. Clin Nutr 33:14–22

    Article  CAS  PubMed  Google Scholar 

  • Ray RM, Bhattacharya S, Bavaria MN, Viar MJ, Johnson LR (2014) Antizyme (AZ) regulates intestinal cell growth independent of polyamines. Amino Acids 46:2231–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swift TA, Dias JA (1986) Effects of the polyamine spermine on binding of follicle-stimulating hormone to membrane-bound immature bovine testis receptors. Biochim Biophys Acta 885:221–230

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Liu XJ (2013) Deficiency of ovarian ornithine decarboxylase contributes to aging-related egg aneuploidy in mice. Aging Cell 12:42–49

    Article  CAS  PubMed  Google Scholar 

  • Thyssen SM, Becu-Villalobos D, Lacau-Mengido IM, Libertun C (1997) alpha-difluoromethylornithine modifies gonadotropin-releasing hormone release and follicle-stimulating hormone secretion in the immature female rat. Proc Soc Exp Biol Med 215:192–197

    Article  CAS  PubMed  Google Scholar 

  • Wei C et al (2016) Exogenous spermine inhibits hypoxia/ischemia-induced myocardial apoptosis via regulation of mitochondrial permeability transition pore and associated pathways. Exp Biol Med (Maywood) 241:1505–1515

    Article  CAS  Google Scholar 

  • Wilson SM, Hawel L 3rd, Pastorian KE, Byus CV (2005) A stable, inducible, dose-responsive ODC overexpression system in human cell lines. Biochim Biophys Acta 1732:103–110

    Article  CAS  PubMed  Google Scholar 

  • Wu HY et al (2015) Structural basis of antizyme-mediated regulation of polyamine homeostasis. Proc Natl Acad Sci USA 112:11229–11234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao S et al (2016) Genome-scale RNA interference screen identifies antizyme 1 (OAZ1) as a target for improvement of recombinant protein production in mammalian cells. Biotechnol Bioeng 113:2403–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YC et al (2008) Polyamines are essential in embryo implantation: expression and function of polyamine-related genes in mouse uterus during peri-implantation period. Endocrinology 149:2325–2332

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Jin L, Casero RA, Davidson NE, Huang Y (2012) Role of ornithine decarboxylase in regulation of estrogen receptor alpha expression and growth in human breast cancer cells. Breast Cancer Res Treat 136:57–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Grants 31201798 from the National Natural Science Foundation of China and 20105103120003 from the Specialized Research Fund for the Doctoral Program of Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Kang or Dongmei Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by Grants 31201798 from the National Natural Science Foundation of China and 20105103120003 from the Specialized Research Fund for the Doctoral Program of Higher Education.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Research involving human participants and/or animals

This article does not contain any studies that involve human participants. All procedures performed in studies involving animals were in accordance with the ethical standards of the Animal Ethics Committee of the College of Animal Science and Technology, Sichuan Agricultural University or practice at which the studies were conducted.

Additional information

Handling Editor: E. Agostinelli.

B. Kang and D. Jiang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, B., Jiang, D., He, H. et al. Effect of Oaz1 overexpression on goose ovarian granulosa cells. Amino Acids 49, 1123–1132 (2017). https://doi.org/10.1007/s00726-017-2411-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2411-8

Keywords

Navigation