Skip to main content

Advertisement

Log in

Bleomycin hydrolase and hyperhomocysteinemia modulate the expression of mouse proteins involved in liver homeostasis

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The liver is the major contributor to homocysteine (Hcy) metabolism and fatty liver disease is associated with hyperhomocysteinemia. Bleomycin hydrolase (Blmh) is an aminohydrolase that also participates in Hcy metabolism by hydrolyzing Hcy-thiolactone. To gain insight into hepatic functions of Blmh, we analyzed the liver proteome of Blmh −/− and Blmh +/+ mice in the absence and presence of diet-induced (high methionine) hyperhomocysteinemia using 2D IEF/SDS-PAGE gel electrophoresis and MALDI–TOF mass spectrometry. We identified eleven liver proteins whose expression was significantly altered as a result of the Blmh gene inactivation. The differential expression (Blmh −/− vs. Blmh +/+) of four liver proteins was lower, of two proteins was higher, and was further modified in mice fed with a hyperhomocysteinemic high-Met diet. The down-regulated proteins are involved in lipoprotein metabolism (ApoA1, ApoE), antigen processing (Psme1), energy metabolism (Atp5h, Gamt), methylglyoxal detoxification (Glo1), oxidative stress response (Sod1), and inactivation of catecholamine neurotransmitters (Comt). The two up-regulated proteins are involved in nitric oxide generation (Ddah1) and xenobiotic detoxification (Sult1c1). We also found that livers of Blmh −/− mice expressed a novel variant of glyoxalase domain-containing protein 4 (Glod4) by a post-transcriptional mechanism. Our findings suggest that Blmh interacts with diverse cellular processes—from lipoprotein metabolism, nitric oxide regulation, antigen processing, and energy metabolism to detoxification and antioxidant defenses—that are essential for liver homeostasis and that modulation of these interactions by hyperhomocysteinemia underlies the involvement of Hcy in fatty liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Hcy:

Homocysteine

Blmh:

Bleomycin hydrolase

Cbs:

Cystathionine β-synthase

ApoA1:

Apolipoprotein A1

ApoE:

Apolipoprotein E

Psme1:

Proteasome activator complex subunit 1

Atp5 h:

ATPase subunit d

Gamt:

Guanidinoacetate-N-methyltransferase

Glo1:

Methylglyoxylase 1

Sod1:

Superoxide dismutase

Comt:

Catechol-O-methyltransferase

Ddah1:

Dimethylarginine dimethylaminohydrolase 1

Sult1c1:

Phenolsulphotransferase

IEF/SDS-PAGE:

Isoelectric focusing/sodium dodecylsulphate polyacrylamide gel electrophoresis

MALDI–TOF:

Matrix-assisted laser desorption ionization–time of flight

References

  • Borowczyk K, Tisonczyk J, Jakubowski H (2012) Metabolism and neurotoxicity of homocysteine thiolactone in mice: protective role of bleomycin hydrolase. Amino Acids 43:1339–1348

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT, Jacobs RL, Stead LM, Brosnan ME (2004) Methylation demand: a key determinant of homocysteine metabolism. Acta Biochim Pol 51:405–413

    CAS  PubMed  Google Scholar 

  • Chwatko G, Boers GH, Strauss KA, Shih DM, Jakubowski H (2007) Mutations in methylenetetrahydrofolate reductase or cystathionine beta-synthase gene, or a high-methionine diet, increase homocysteine thiolactone levels in humans and mice. Faseb J 21:1707–1713

    Article  CAS  PubMed  Google Scholar 

  • Das AM (2003) Regulation of the mitochondrial ATP-synthase in health and disease. Mol Genet Metab 79:71–82

    Article  CAS  PubMed  Google Scholar 

  • De Bonis ML, Tessitore A, Pellecchia MT, Longo K, Salvatore A, Russo A, Ingrosso D, Zappia V, Barone P, Galletti P, Tedeschi G (2010) Impaired transmethylation potential in Parkinson’s disease patients treated with L-Dopa. Neurosci Lett 468:287–291

    Article  PubMed  Google Scholar 

  • DiBello PM, Dayal S, Kaveti S, Zhang D, Kinter M, Lentz SR, Jacobsen DW (2010) The nutrigenetics of hyperhomocysteinemia: quantitative proteomics reveals differences in the methionine cycle enzymes of gene-induced versus diet-induced hyperhomocysteinemia. Mol Cell Proteomics MCP 9:471–485

    Article  CAS  Google Scholar 

  • Distler MG, Palmer AA (2012) Role of Glyoxalase 1 (Glo1) and methylglyoxal (MG) in behavior: recent advances and mechanistic insights. Front Genet 3:250

    Article  PubMed Central  PubMed  Google Scholar 

  • Fleming TH, Theilen TM, Masania J, Wunderle M, Karimi J, Vittas S, Bernauer R, Bierhaus A, Rabbani N, Thornalley PJ, Kroll J, Tyedmers J, Nawrotzki R, Herzig S, Brownlee M, Nawroth PP (2013) Aging-dependent reduction in glyoxalase 1 delays wound healing. Gerontology 59:427–437

    Google Scholar 

  • Glowacki R, Bald E, Jakubowski H (2010) Identification and origin of Nepsilon–homocysteinyl–lysine isopeptide in humans and mice. Amino Acids 39:1563–1569

    Article  CAS  PubMed  Google Scholar 

  • Gueant-Rodriguez RM, Spada R, Moreno-Garcia M, Anello G, Bosco P, Lagrost L, Romano A, Elia M, Gueant JL (2011) Homocysteine is a determinant of ApoA-I and both are associated with ankle brachial index, in an ambulatory elderly population. Atherosclerosis 214:480–485

    Article  CAS  PubMed  Google Scholar 

  • Hamelet J, Demuth K, Paul JL, Delabar JM, Janel N (2007) Hyperhomocysteinemia due to cystathionine beta synthase deficiency induces dysregulation of genes involved in hepatic lipid homeostasis in mice. J Hepatol 46:151–159

    Article  CAS  PubMed  Google Scholar 

  • Hirsch S, Poniachick J, Avendano M, Csendes A, Burdiles P, Smok G, Diaz JC, de la Maza MP (2005) Serum folate and homocysteine levels in obese females with non-alcoholic fatty liver. Nutrition (Burbank, Los Angeles County, Calif) 21:137–141

    Article  CAS  Google Scholar 

  • Hofmann MA, Lalla E, Lu Y, Gleason MR, Wolf BM, Tanji N, Ferran LJ Jr, Kohl B, Rao V, Kisiel W, Stern DM, Schmidt AM (2001) Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J Clin Invest 107:675–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu XW, Qin SM, Li D, Hu LF, Liu CF (2013) Elevated homocysteine levels in levodopa-treated idiopathic Parkinson’s disease: a meta-analysis. Acta Neurol Scand 128:73–82

    Article  CAS  PubMed  Google Scholar 

  • Ishimine N, Usami Y, Nogi S, Sumida T, Kurihara Y, Matsuda K, Nakamura K, Yamauchi K, Okumura N, Tozuka M (2010) Identification of N-homocysteinylated apolipoprotein AI in normal human serum. Ann Clin Biochem 47:453–459

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H (1997) Metabolism of homocysteine thiolactone in human cell cultures. Possible mechanism for pathological consequences of elevated homocysteine levels. J Biol Chem 272:1935–1942

    CAS  PubMed  Google Scholar 

  • Jakubowski H (2002) Homocysteine is a protein amino acid in humans. Implications for homocysteine-linked disease. J Biol Chem 277:30425–30428

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H (2008) New method for the determination of protein N-linked homocysteine. Anal Biochem 380:257–261

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H (2013) Homocysteine in protein structure/function and human disease—chemical biology of homocysteine-containing proteins. Springer, Wien

    Book  Google Scholar 

  • Jakubowski H, Boers GH, Strauss KA (2008) Mutations in cystathionine {beta}-synthase or methylenetetrahydrofolate reductase gene increase N-homocysteinylated protein levels in humans. FASEB J 22:4071–4076

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H, Perla-Kajan J, Finnell RH, Cabrera RM, Wang H, Gupta S, Kruger WD, Kraus JP, Shih DM (2009) Genetic or nutritional disorders in homocysteine or folate metabolism increase protein N-homocysteinylation in mice. Faseb J 23:1721–1727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamata Y, Itoh Y, Kajiya A, Karasawa S, Sakatani C, Takekoshi S, Osamura RY, Takeda A (2007) Quantification of neutral cysteine protease bleomycin hydrolase and its localization in rat tissues. J Biochem 141:69–76

    Article  CAS  PubMed  Google Scholar 

  • Kaplowitz N, Than TA, Shinohara M, Ji C (2007) Endoplasmic reticulum stress and liver injury. Semin Liver Dis 27:367–377

    Article  CAS  PubMed  Google Scholar 

  • Liao D, Tan H, Hui R, Li Z, Jiang X, Gaubatz J, Yang F, Durante W, Chan L, Schafer AI, Pownall HJ, Yang X, Wang H (2006) Hyperhomocysteinemia decreases circulating high-density lipoprotein by inhibiting apolipoprotein A–I protein synthesis and enhancing HDL cholesterol clearance. Circ Res 99:598–606

    Article  CAS  PubMed  Google Scholar 

  • Luczak M, Formanowicz D, Pawliczak E, Wanic-Kossowska M, Wykretowicz A, Figlerowicz M (2011) Chronic kidney disease-related atherosclerosis—proteomic studies of blood plasma. Proteome Sci 9:25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mikael LG, Genest J Jr, Rozen R (2006) Elevated homocysteine reduces apolipoprotein A-I expression in hyperhomocysteinemic mice and in males with coronary artery disease. Circ Res 98:564–571

    Article  CAS  PubMed  Google Scholar 

  • Montoya SE, Thiels E, Card JP, Lazo JS (2007) Astrogliosis and behavioral changes in mice lacking the neutral cysteine protease bleomycin hydrolase. Neuroscience 146:890–900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mudd SH, Ebert MH, Scriver CR (1980) Labile methyl group balances in the human: the role of sarcosine. Metabolism 29:707–720

    Article  CAS  PubMed  Google Scholar 

  • Mudd SH, Levy HL, Kraus JP (2001) Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, et al (eds) The metabolic and molecular bases of inherited disease, vol 2. Mc Graw-Hill, New York, pp 2007–2056

  • Ogawa T, Kimoto M, Sasaoka K (1987) Occurrence of a new enzyme catalyzing the direct conversion of NG, NG-dimethyl-l-arginine to l-citrulline in rats. Biochem Biophys Res Commun 148:671–677

    Article  CAS  PubMed  Google Scholar 

  • Rauh M, Verwied S, Knerr I, Dorr HG, Sonnichsen A, Koletzko B (2001) Homocysteine concentrations in a German cohort of 500 individuals: reference ranges and determinants of plasma levels in healthy children and their parents. Amino Acids 20:409–418

    Article  CAS  PubMed  Google Scholar 

  • Schwartz DR, Homanics GE, Hoyt DG, Klein E, Abernethy J, Lazo JS (1999) The neutral cysteine protease bleomycin hydrolase is essential for epidermal integrity and bleomycin resistance. Proc Natl Acad Sci USA 96:4680–4685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spitsyn VA, Nafikova A, Spitsyna N, Afanas’eva IS (2001) Genetic predisposition to development of toxic liver cirrhosis caused by alcohol. Genetika 37:698–707

    CAS  PubMed  Google Scholar 

  • Stuhlinger MC, Stanger O (2005) Asymmetric dimethyl-l-arginine (ADMA): a possible link between homocyst(e)ine and endothelial dysfunction. Curr Drug Metab 6:3–14

    Article  PubMed  Google Scholar 

  • Thornalley PJ (1993) The glyoxalase system in health and disease. Mol Aspects Med 14:287–371

    Article  CAS  PubMed  Google Scholar 

  • Towne CF, York IA, Watkin LB, Lazo JS, Rock KL (2007) Analysis of the role of bleomycin hydrolase in antigen presentation and the generation of CD8 T cell responses. J Immunol 178:6923–6930

    Article  CAS  PubMed  Google Scholar 

  • Vasuri F, Capizzi E, Bellavista E, Mishto M, Santoro A, Fiorentino M, Capri M, Cescon M, Grazi GL, Grigioni WF, D’Errico-Grigioni A, Franceschi C (2010) Studies on immunoproteasome in human liver. Part I: absence in fetuses, presence in normal subjects, and increased levels in chronic active hepatitis and cirrhosis. Biochem Biophys Res Commun 397:301–306

    Article  CAS  PubMed  Google Scholar 

  • Velez-Carrasco W, Merkel M, Twiss CO, Smith JD (2008) Dietary methionine effects on plasma homocysteine and HDL metabolism in mice. J Nutr Biochem 19:362–370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, Zhou J, Maeda N, Krisans SK, Malinow MR, Austin RC (2001) Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 107:1263–1273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao Y, Zhang Y, Lv X, Su D, Li D, Xia M, Qiu J, Ling W, Ma J (2011) Relationship between lipid profiles and plasma total homocysteine, cysteine and the risk of coronary artery disease in coronary angiographic subjects. Lipids Health Dis 10:137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yalcin EB, More VR, Neira K, Lu ZJ, Cherrington NJ, Slitt AL, King RS (2013) Down-regulation of sulfotransferase expression and activity in diseased human livers. Drug Metab Dispos

  • Zaabczyk M, Glowacki R, Machnik A, Herod P, Kazek G, Jakubowski H, Undas A (2011) Elevated concentrations of Nvarepsilon–homocysteinyl–lysine isopeptide in acute myocardial infarction: links with ADMA formation. Clin Chem Lab Med CCLM/FESCC 49:729–735

    Google Scholar 

  • Zhou J, Moller J, Danielsen CC, Bentzon J, Ravn HB, Austin RC, Falk E (2001) Dietary supplementation with methionine and homocysteine promotes early atherosclerosis but not plaque rupture in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 21:1470–1476

    Article  CAS  PubMed  Google Scholar 

  • Zimny J, Sikora M, Guranowski A, Jakubowski H (2006) Protective mechanisms against homocysteine toxicity: the role of bleomycin hydrolase. J Biol Chem 281:22485–22492

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank John Lazo for kindly providing a breeding pair of Blmh-null mice. This work was supported in part by grants from the American Heart Association, the National Science Center, Poland (2011/01/B/NZ1/03417, 2011/02/A/NZ1/00010, 2012/07/B/NZ7/01178, and 2013/09/B/NZ5/02794) and MNiSW, Poland (N401 065321504, N N302 434439).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hieronim Jakubowski.

Additional information

J. Suszyńska-Zajczyk and J. Wróblewski contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Supplementary material 2 (DOCX 1729 kb)

Supplementary material 3 (DOCX 39 kb)

Supplementary material contains supplemental Experimental Procedures, Fig. S1, and Table S1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suszyńska-Zajczyk, J., Wróblewski, J., Utyro, O. et al. Bleomycin hydrolase and hyperhomocysteinemia modulate the expression of mouse proteins involved in liver homeostasis. Amino Acids 46, 1471–1480 (2014). https://doi.org/10.1007/s00726-014-1712-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1712-4

Keywords

Navigation