Skip to main content
Log in

Investigating the parameters affecting the adsorption of amino acids onto AgCl nanoparticles with different surface charges

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

In this paper, adsorption behaviors of typical neutral (alanine), acidic (glutamic acid) and basic (lysine) amino acids onto the surfaces of neutral as well as positively and negatively charged silver chloride nanoparticles were examined. Silver chloride nanoparticles with different charges and different water content were synthesized by reverse micelle method. The adsorptions of the above mentioned amino acids onto the surfaces of differently charged silver chloride nanoparticles were found to depend strongly on various parameters including pH of the aqueous solution, type of amino acid, water to surfactant mole ratio, and type of charges on the surfaces of silver chloride nanoparticles. It was found that the interaction of –NH3 + groups of the amino acids with silver ion could be a driving force for adsorption of amino acids. Alanine and Glutamic acid showed almost similar trend for being adsorbed on the surface of silver chloride nanoparticles. Electrostatic interaction, hydrophobicity of both nanoparticle and amino acid, complex formation between amine group and silver ion, interaction between protonated amine and silver ion as well as the number of nanoparticles per unit volume of solution were considered for interpreting the observed results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Absalan G, Akhond M, Sheikhian L (2010) Partitioning of acidic, basic and neutral amino acids into imidazolium-based ionic liquids. Amino Acids 39:167–174

    Article  CAS  PubMed  Google Scholar 

  • Aladdine S, Nygren H (1996) The adsorption of water and amino acids onto hydrophilic and hydrophobic quartz surfaces. Coll Surf B 6:71–79

    Article  Google Scholar 

  • Bagwe RP, Khilar KC (1997) Effect of the intermicellar exchange rate and cations on the size of silver chloride nanoparticles formed in reverse micelle of AOT. Langmuir 13:6432–6438

    Article  CAS  Google Scholar 

  • Black SD, Mould DR (1991) Development of hydrophobicity parameters to analyze proteins which bear post- or cotranslational modifications. Anal Biochem 193:72–82

    Article  CAS  PubMed  Google Scholar 

  • Cabos C, Delord P (1979) Etude d’un systeme micellaire de type inverse par diffusion centrale des neutronsfor synthesis and catalysis. J Appl Cryst 12:502–510

    Article  CAS  Google Scholar 

  • Chew CH, Gan CM, Shah DO (1990) The effect of alkanes on the formation of ultrafine silver bromide particles in ionic w/o microemulsions. J Dispers Sci Technol 11:593–609

    Article  CAS  Google Scholar 

  • Churchill H, Teng H, Hazen RM (2004) Measurements of pH-dependent surface charge with atomic force microscopy: implications for amino acid adsorption and the origin of life. Am Miner 89:1048–1055

    CAS  Google Scholar 

  • Freundlich HMF (1906) Ueber die Adsorption in Loesungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  • Galisteo F, Norde W (1995) Protein adsorption at the AgI-water interface. J Colloid Interface Sci 172:502–509

    Article  CAS  Google Scholar 

  • Gao Q, Xu W, Xu Y, Wu D, Sun Y, Deng F, Shen W (2008) Amino acid adsorption on mesoporous materials: influence of types of amino acids, modification of mesoporous materials, and solution conditions. J Phys Chem B 112:2261–2267

    Article  CAS  PubMed  Google Scholar 

  • Garrett RH Grisham CM (1999) Biochemistry, 2nd Edn

  • Gray JJ (2004) The interaction of proteins with solid surfaces. Curr Opin Struct Biol 14:110–115

    Article  CAS  PubMed  Google Scholar 

  • Gregorczyk DS, Carta G (1996) Adsorption of amino acids on porous polymeric adsorbents I. Equilib Chem Sci Eng 51:807–818

    Google Scholar 

  • Hoefling M, Iori F, Corni S, Gottschalk KE (2010) Interaction of amino acids with the Au(111) surface: adsorption free energies from molecular dynamics simulations. Langmuir 26:8347–8351

    Article  CAS  PubMed  Google Scholar 

  • Horton HR, Moran LA, Ochs RS, Rawn JD, Scrimgeour KG (2002) Principles of Biochemistry. Prentice Hall, New York, 3rd edn

  • Husein MM, Rodil E, Vera JH (2003) Formation of silver chloride nanoparticles in microemulsions by direct precipitation with the surfactant counter ion. Langmuir 19:8467–8474

    Article  CAS  Google Scholar 

  • Ikahsan J, Johnson BB, Wells JD, Angove MJ (2004) Adsorption of aspartic acid on kaolinite. J Colloid Interface Sci 273:1–5

    Article  Google Scholar 

  • Imamura K, Kawasaki Y, Nagayasu T, Sakiyama T, Nakanishi K (2007) Adsorption characteristics of oligopeptides composed of acidic and basic amino acids on titanium surface. J Biosci Bioeng 103:7–12

    Article  CAS  PubMed  Google Scholar 

  • Jeunieau L, Nagy JB (1999a) Adsorption of pseudoisocyanine and of a thiacarbocyanine dyes on silver halides nanoparticles. Nanostruct Mater 12:979–982

    Article  Google Scholar 

  • Jeunieau L, Nagy JB (1999b) Adsorption of pseudoisocyanine on nanoparticles of silver halides. Colloids Surf A 151:419–434

    Article  CAS  Google Scholar 

  • Jeunieau L, Alin V, Nagy JB (2000) Adsorption of thiacyanine dyes on silver halide nanoparticles: study of the adsorption site. Langmuir 16:597–606

    Article  CAS  Google Scholar 

  • Kitadai N, Yokoyama T, Nakashima S (2009) ATR-IR spectroscopic study of l-lysine adsorption on amorphous silica. J Colloid Interface Sci 329:31–37

    Article  CAS  PubMed  Google Scholar 

  • Kolthoff IM, Yutzy HC (1937) Studies on aging of fresh precipitates. XIII. The aging of freshly precipitated silver chloride as indicated by the adsorption of wool violet. J Am Chem Soc 59:1215–1219

    Article  CAS  Google Scholar 

  • Krohn JE, Tsapatsis M (2005) Amino acid adsorption on zeolite β. Langmuir 21:8743–8750

    Article  CAS  PubMed  Google Scholar 

  • Krohn JE, Tsapatsis M (2006) Phenylalanine and arginine adsorption in zeolites X, Y and β. Langmuir 2:9350–9356

    Article  Google Scholar 

  • Lambert JF (2008) Adsorption and polymerization of amino acids on mineral surfaces: a review. Orig Life Evol Biosph 38:211–242

    Article  CAS  PubMed  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Lide DR (2002) CRC handbook of chemistry and physics, 83rd edn. CRC Press, Boca Raton

    Google Scholar 

  • McDonnell AMP, Beving D, Wang A, Chen W, Yan Y (2005) Hydrophilic and antimicrobial zeolite coatings for gravity-independent water separation. Adv Funct Mater 15:336–340

    Article  CAS  Google Scholar 

  • Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker D, Tessier CA, Youngs W (2005) Silver(I)–imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 127:2285–2291

    Article  CAS  PubMed  Google Scholar 

  • Meng M, Stievano L, Lambert JF (2004) Adsorption and thermal condensation mechanisms of amino acids on oxide supports. 1. Glycine on silica. Langmuir 20:914–923

    Article  CAS  PubMed  Google Scholar 

  • Mielke M, Zimehl R (2001) adsorption at solid/liquid interfaces: Measures to determine the hydrophobicity of colloidal polymers. Progr Colloid Polym 117:56–62

    Article  CAS  Google Scholar 

  • Mittal A, Kurup L, Mittal J (2007) Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers. J Hazard Mater 146:243–248

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi K, Sakiyama T, Imamura K (2001) On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng 91:233–244

    CAS  PubMed  Google Scholar 

  • Pileni M (1988) In: J.H. Fendler (Ed.), Nanoparticles and nanostructured films. Wiley–VCH, New York, p 71

  • Pillai V, Kumar P, Hou MJ, Ayyub P, Shah DO (1995) Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors. Adv Colloid Interface Sci 55:241–269

    Article  CAS  Google Scholar 

  • Pramanik S, Sc Bhattacharya, Imae T (2007) Fluorescence quenching of 3,7-diamino-2,8-dimethyl-5-phenyl phenazinium chloride by AgCl and Ag nanoparticles. J Lumin 126:155–159

    Article  CAS  Google Scholar 

  • Qiang G, Wujun X, Yao X, Dong W, Yuhan S, Feng D, Wanling S (2008) Amino acid adsorption on mesoporous materials: influence of types of amino acids, modification of mesoporous materials, and solution conditions. J Phys Chem B 112:2261–2267

    Article  Google Scholar 

  • Roddick-Lanzilotta AD, McQuillan AJ (2000) An in situ infrared spectroscopic study of glutamic acid and of aspartic acid adsorbed on TiO2: implications for the biocompatibility of titanium. J Colloid Interface Sci 227:48–54

    Google Scholar 

  • Sambhy V, MacBride MM, Peterson BR, Sen A (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128:9798–9808

    Article  CAS  PubMed  Google Scholar 

  • Sarikaya M, Tamerler C, Jen AK, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577–585

    Article  CAS  PubMed  Google Scholar 

  • Schnirman AA, Zahavi E, Yeger H, Rosenfeld R, Benhar I, Reiter Y, Sivan U (2006) Antibody molecules discriminate between crystalline facets of a gallium arsenide semiconductor. Nano Lett 6:1870–1874

    Article  CAS  Google Scholar 

  • Sethi M, Marc RK (2010) Understanding the mechanism of amino acid-based Au nanoparticle chain formation. Langmuir 26:9860–9874

    Article  CAS  PubMed  Google Scholar 

  • Singha A, Dasagupta S, Roy A (2006) Comparison of metal-amino acid interaction in Phe-Ag and Tyr-Ag complexes by spectroscopic measurements. Biophys Chem 120:215–224

    Article  CAS  PubMed  Google Scholar 

  • Sun SW, Lin YC, Weng YM, Chen MJ (2006) Efficiency improvements on ninhydrin method for amino acid quantification. J Food Compos Analy 19:112–117

    Article  CAS  Google Scholar 

  • Switzer JA (1988) In: Fendler JH (ed.), Nanoparticles and nanostructured films. Wiley–VCH, New York, p 53

  • Tony SS, Pant KK (2004) Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina. Sep Purif Technol 36:139–147

    Article  Google Scholar 

  • Trudeau TG, Hore DK (2010) Hydrophobic amino acid adsorption on surfaces of varying wettability. Langmuir 26:11095–11102

    Article  CAS  PubMed  Google Scholar 

  • Vaucher S, Fielden J, Dujardin E, Mann S (2002) Molecule-based magnetic nanoparticles: synthesis of cobalt hexacyanoferrate, cobalt pentacyanonitrosylferrate, and chromium hexacyanochromate coordination polymers in water-in-oil microemulsions. Nano Lett 2:225–229

    Article  CAS  Google Scholar 

  • Vinu A, Hossain KZ, Kumar GS, Ariga K (2006) Adsorption of l-histidine over mesoporous carbon molecular sieves. Carbon 44:530–536

    Article  CAS  Google Scholar 

  • Wang Y, Shi C, Gan Q, Dai Y (2004) Separation of amino acids by polymeric reversed micelle extraction. Sep Purif Technol 35:1–9

    Article  Google Scholar 

  • Zachariadis CP, Hadjikakou SK, Hadjiliadis N, Skoulika S, Michaelides A, Balzarini J, De Clercq E (2004) Synthesis, characterization and in vitro study of the cytostatic and antiviral activity of new polymeric silver(I) complexes with ribbon structures derived from the conjugated heterocyclic thioamide 2-mercapto-3,4,5,6-tetrahydropyrimidine. Eur J Inorg Chem 7:1420–1426

    Article  Google Scholar 

  • Zhu CQ, Li DH, Zhu QZ, Zheng H, Chen QY, Yang HH, Xu JG (2000) Determination of proteins at nanogram levels by their quenching effect on large particle scattering of colloidal silver chloride. Fresenius J Anal Chem 366:863–868

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Shiraz University Research Council for financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghodratollah Absalan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Absalan, G., Ghaemi, M. Investigating the parameters affecting the adsorption of amino acids onto AgCl nanoparticles with different surface charges. Amino Acids 43, 1955–1967 (2012). https://doi.org/10.1007/s00726-012-1270-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1270-6

Keywords

Navigation