Skip to main content

Advertisement

Log in

Nucleobase-containing peptides: an overview of their characteristic features and applications

  • Minireview Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Reports on nucleobase-containing chiral peptides (both natural and artificial) and achiral pseudopeptides are reviewed. Their synthesis, structural features, DNA and RNA-binding ability, as well as some other interesting applications which make them promising diagnostic/therapeutic agents of great importance in many areas of biology and therapy are taken into critical consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Scheme 2
Scheme 3

Similar content being viewed by others

References

  • Altenbrunn F, Seitz O (2008) O-Allyl protection in the Fmoc-based synthesis of difficult PNA. Org Biomol Chem 6:2493–2498

    Article  CAS  PubMed  Google Scholar 

  • Astriab-Fisher A, Sergueev DS, Fisher M, Ramsay Shaw B, Juliano RL (2000) Antisense inhibition of P-glycoprotein expression using peptide–oligonucleotide conjugates. Biochem Pharmacol 60:83–90

    Article  CAS  PubMed  Google Scholar 

  • Azzam ME, Algranati ID (1973) Mechanism of puromycin action: fate of ribosomes after release of nascent protein chains from polysomes. Proc Nat Acad Sci USA 70:3866–3869

    Article  CAS  PubMed  Google Scholar 

  • Betts L, Josey JA, Veal JM, Jordan SR (1995) A nucleic acid triple helix formed by a peptide nucleic acid-DNA complex. Science 270:1838–1841

    Article  CAS  PubMed  Google Scholar 

  • Boado RJ, Tsukamoto H, Pardridge WM (1998) Drug delivery of antisense molecules to the brain for treatment of Alzheimer’s disease and cerebral AIDS. J Pharm Sci 87:1308–1315

    Article  CAS  PubMed  Google Scholar 

  • Brandt O, Hoheisel JD (2004) Peptide nucleic acids on microarrays and other biosensors. Trends Biotechnol 22:617–622

    Article  CAS  PubMed  Google Scholar 

  • Brasun J, Oldziej S, Taddei M, Kozłowski H (2001) Impact of Cu(II) and Ni(II) on the structure of chiral peptide nucleic acids having four, six and eight thymines in a peptide side chain. J Inorg Biochem 85:79–87

    Article  CAS  PubMed  Google Scholar 

  • Buttrey JD, Jones AS, Walker RT (1975) Synthetic Analogues of Polynucleotides-XII(The Resolution of dl-beta-(Thymin-1-yl)Alanine and Polymerisation of the beta-(Thymin-1-yl)Alanines. Tetrahedron 31:73–75

    Article  CAS  Google Scholar 

  • Calabretta A, Tedeschi T, Di Cola G, Corradini R, Sforza S, Marchelli R (2009) Arginine-based PNA microarrays for APOE genotyping. Mol Biosyst 5:1323–1330

    Article  CAS  PubMed  Google Scholar 

  • Christensen L, Fitzpatrick R, Gildea B, Petersen KH, Hansenn HF, Koch T, Egholm M, Buchardt O, Nielsen PE, Coull J et al (1995) Solid-phase synthesis of peptide nucleic acids. J Pept Sci 3:175–183

    Article  Google Scholar 

  • Corey DR (1997) Peptide nucleic acids—expanding the options for nucleic acid recognition. Trends Biotechnol 15:224–229

    Article  CAS  PubMed  Google Scholar 

  • Corradini R, Sforza S, Dossena A, Palla G, Rocchi R, Filira F, Nastri F, Marchelli R (2001) Epimerization of peptide nucleic acids analogs during solid-phase synthesis: optimization of the coupling conditions for increasing the optical purity. J Chem Soc Perkin Trans 1:2690–2696

    Article  Google Scholar 

  • Corradini R, Sforza S, Tedeschi T, Totsingan F, Marchelli R (2007) Peptide nucleic acids with a structurally biased backbone: effects of conformational constraints and stereochemistry. Curr Top Med Chem 7:681–694

    Article  CAS  PubMed  Google Scholar 

  • Corriveau MN, Zhang N, Holtappels G, Van Roy N, Bachert C (2009) Detection of Staphylococcus aureus in nasal tissue with peptide nucleic acid-fluorescence in situ hybridization. Am J Rhinol Allergy 23:461–465

    Article  PubMed  Google Scholar 

  • De la Torre BG, Aviñó A, Tarrason G, Piulats J, Albericio F, Eritja R (1994) Stepwise solid-phase synthesis of oligonucleotide-peptide hybrids. Tetrahedron Lett 35:2733–2736

    Article  Google Scholar 

  • Demers DB, Curry ET, Egholm M, Sozer AC (1995) Enhanced PCR amplification of VNTR locus D1S80 using peptide nucleic acid (PNA). Nucleic Acids Res 23:3050–3055

    Article  CAS  PubMed  Google Scholar 

  • Demidov VV (2001) PD-loop technology: PNA openers at work. Expert Rev Mol Diagn 1:343–351

    Article  CAS  PubMed  Google Scholar 

  • Demidov VV, Potaman VN, Frank-Kamenetskii MD, Egholm M, Buchardt O, Sonnichsen SH et al (1994) Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 48:1310–1313

    Article  CAS  PubMed  Google Scholar 

  • Diederichsen U (1996) Pairing properties of alanyl peptide nucleic acids containing an amino acid backbone with alternating configuration. Angew Chem Int Ed 35:445–448

    Article  CAS  Google Scholar 

  • Diederichsen U, Schmitt HW (1996) Self-pairing PNA with alternating alanyl-/homoalanyl backbone. Tetrahedron Lett 37:475–478

    Article  CAS  Google Scholar 

  • Diederichsen U, Weicherdling D, Diezemann N (2005) Side chain homologation of alanyl peptide nucleic acids: pairing selectivity and stacking. Org Biomol Chem 3:1058–1066

    Article  CAS  PubMed  Google Scholar 

  • Doel MT, Jones AS, Taylor N (1969) An approach to the synthesis of peptide analogues of oligonucleotides (Nucleopeptides). Tetrahedron Lett 27:2285–2288

    Article  Google Scholar 

  • Doel MT, Jones AS, Walker RT (1974) The synthesis of peptides containing purine and pyrimidine derivatives of dl-alanine. Tetrahedron 30:2755–2759

    Article  CAS  Google Scholar 

  • Dragulescu-Andrasi A, Rapireddy S, He G, Bhattacharya B, Hyldig-Nielsen JJ, Zon G, Ly DH (2006) Cell-permeable peptide nucleic acid designed to bind to the 5’-untranslated region of E-cadherin transcript induces potent and sequence-specific antisense effects. J Am Chem Soc 128:16104–16112

    Article  CAS  PubMed  Google Scholar 

  • Draminski M, Pitha J (1978) Polypeptides containing adenine and uracil residues. Makromol Chem 179:2195–2200

    Article  CAS  Google Scholar 

  • Dueholm K, Egholm M, Behrens C, Christensen L, Hansen HF, Vulpius T, Petersen KH, Berg RH, Nielsen PE, Buchardt O (1994) Synthesis of peptide nucleic acid monomers containing the 4 natural nucleobases—thymine, cytosine, adenine, and guanine—and their oligomerization. J Org Chem 59:5767–5773

    Article  CAS  Google Scholar 

  • Egholm M, Buchardt O, Nielsen PE, Berg RH (1992) Peptide nucleic acids (PNA)—oligonucleotide analogues with an achiral peptide backbone. J Am Chem Soc 114:1895–1897

    Article  CAS  Google Scholar 

  • Egholm M, Buchardt O, Christensen L, Behrens C, Frier SM, Driver DA et al (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen bonding rules. Nature 365:566–568

    Article  CAS  PubMed  Google Scholar 

  • Egholm M, Christensen L, Dueholm KL, Buchardt O, Coull J, Nielsen PE (1995) Efficient pH-independent sequence-specific DNA-binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res 23:217–222

    Article  CAS  PubMed  Google Scholar 

  • Fiandaca MJ, Hyldig-Nielsen JJ, Gildae BD, Coull JM (2001) Self reporting PNA/DNA primers for PCR analysis. Genome Res 11:609–613

    Article  CAS  PubMed  Google Scholar 

  • Geotti-Bianchini P, Beyrath J, Chaloin O, Formaggio F, Bianco A (2008) Design and synthesis of intrinsically cell-penetrating nucleopeptides. Org Biomol Chem 6:3661–3663

    Article  CAS  PubMed  Google Scholar 

  • Gooday GW (1990) In: Kuhn PJ, Trinci AP, Jung MJ, Goosey MW, Copping LG (eds) Biochemistry of cell walls and membranes in fungi, vol 61. Springer, Berlin

  • Hanvey JC, Peffer NJ, Bisi JE (1992) Antisense and antigene properties of peptide nucleic acids. Science 258:1481–1485

    Article  CAS  PubMed  Google Scholar 

  • Hector RF, Zimmer BL, Pappagianis D (1990) Evaluation of nikkomycins X and Z in murine models of coccidioidomycosis, histoplasmosis, and blastomycosis. Antimicrob Agents Chemother 34:587–593

    CAS  PubMed  Google Scholar 

  • Huang PC (2008) Novel synthesis of alpha-PNA monomers by U-4CR. Amino Acids 34:449–453

    Article  CAS  PubMed  Google Scholar 

  • Hudson RHE, Wojciechowski F (2008) A Fmoc/Boc pseudoisocytosine monomer for peptide nucleic acid synthesis. Can J Chem 86:1026–1029

    Article  CAS  Google Scholar 

  • Ichikawa Y, Hirata K, Ohbayashi M, Isobe M (2004) Total synthesis of (+)-blasticidin s. Chemistry 10:3241–3251

    Article  CAS  PubMed  Google Scholar 

  • Inaki Y, Tohnai N, Miyabayashi K, Wada T, Miyata M (1998) Isopoly-l-ornithine derivatives of the thymine and thymidine. Nucleos Nucleot Nucl 17:339–350

    Article  CAS  Google Scholar 

  • Itaya M, Yamaguchi I, Kobayashi K, Endo T, Tanaka T (1990) The blasticidin S resistance gene (bsr) selectable in a single copy state in the Bacillus subtilis chromosome. J Biochem 107:799–801

    CAS  PubMed  Google Scholar 

  • Katritzky AR, Narindoshvili T (2008) Chiral peptide nucleic acid monomers (PNAM) with modified backbones. Org Biomol Chem 6:3171–3176

    Article  CAS  PubMed  Google Scholar 

  • Kerman K, Matsubara Y, Morita Y, Takamura Y, Tamiya E (2004) Peptide nucleic acid modified magnetic beads for intercalator based electrochemical detection of DNA hybridization. Sci Technol Adv Mater 5:351–357

    Article  CAS  Google Scholar 

  • Kitamatsu M, Shigeyasu M, Sisido M (2002) Novel peptide nucleic acids that contain pyrrolidine rings of various stereoisomers. In: Peptides 2002, Proceedings of the European peptide symposium 27th, pp 532–533

  • Knudsen H, Nielsen PE (1996) Antisense properties of duplex- and triplex-forming PNAs Nucl. Acids Res 24:494–500

    Article  CAS  Google Scholar 

  • Korshunova GA, Ilicheva IA, Sumbatyan NV, Hyun K (1997) Design and synthesis of new types of oligonucleopeptides. Lett Pept Sci 4:473–476

    CAS  Google Scholar 

  • Kristensen I, Larsen PO (1974) gamma-Glutamylwillardiine and gamma-glutamylphenylalanylwillardiine from seeds of Fagus silvatica. Phytochemistry 13:2799–27802

    Article  CAS  Google Scholar 

  • Kuwahara M, Arimitsu M, Sisido M (1999) Novel peptide nucleic acid that shows high sequence specificity and all-or-none-type hybridization with the complementary DNA. J Am Chem Soc 121:256–257

    Article  CAS  Google Scholar 

  • Lee HC, Liou K, Kim DH, Kang SY, Woo JS, Sohng JK (2003) Cystocin, a novel antibiotic, produced by Streptomyces sp. GCA0001: biological activities. Arch Pharm Res 26:446–448

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Jeon JH, Lim JC, Choi H, Yoon Y, Kim SK (2007) Peptide nucleic acid synthesis by novel amide formation. Org Lett 9:3291–3293

    Article  CAS  PubMed  Google Scholar 

  • Lenzi A, Reginato G, Taddei M, Trifilieff E (1995) Solid phase synthesis of a self complementary (antiparallel) chiral peptidic nucleic acid strand. Tetrahedron Lett 36:1717–1718

    Article  CAS  Google Scholar 

  • Lioy E, Kessler H (1996) Synthesis of a new chiral peptide analogue of DNA using ornithine subunits and solid-phase peptide synthesis methodologies. Liebigs Ann 2:201–204

    Google Scholar 

  • Liu M, Arora SK (2008) Structural investigations of mode of action of drugs: structure and conformation of a novel peptidyl nucleoside antibiotic chryscandin hydrochloride pentahydrate. J Antibiot 61:322–325

    Article  CAS  PubMed  Google Scholar 

  • Mandrugin VA, Sumbatyan NV, Korshunova GA (2002) Solid phase synthesis of new heterorganic nucleopeptides based on a delta-ornithine backbone. In: Peptides 2002, Proceedings of the European peptide symposium 27th, pp 216–217

  • Matsumura S, Takahashi T, Ueno A, Mihara H (2003) Complementary nucleobase interaction enhances peptide-peptide recognition and self-replicating catalysis. Chemistry 9:4829–4837

    Article  CAS  PubMed  Google Scholar 

  • McMinn DL, Greenberg MM (1999) Convergent solution-phase synthesis of a nucleopeptide using a protected oligonucleotide. Bioorg Med Chem Lett 9:547–550

    Article  CAS  PubMed  Google Scholar 

  • Meierhenrich UJ, Muñoz Caro GM, Bredehöft JH, Jessberger EK, Thiemann WHP (2004) Identification of diamino acids in the Murchison meteorite. Proc Natl Acad Sci USA 101:9182–9186

    Article  CAS  PubMed  Google Scholar 

  • Merrifield B (1986) Solid-phase synthesis. Science 232:341–347

    Article  CAS  PubMed  Google Scholar 

  • Musumeci D, Roviello GN, Valente M, Sapio R, Pedone C, Bucci EM (2004) New synthesis of PNA-3′DNA linker monomers, useful building blocks to obtain PNA/DNA chimeras. Biopolymers 76:535–542

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PE (1993) Peptide nucleic acid (PNA): a model structure for the primordial genetic material? Orig Life Evol Biosph 23:323–327

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PE (1999a) Peptide nucleic acids as therapeutic agents. Curr Opin Struct Biol 9:353–357

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PE (1999b) Peptide nucleic acid. A molecule with two identities. Acc Chem Res 32:624–630

    Article  CAS  Google Scholar 

  • Nielsen PE, Egholm M (1999) An introduction to peptide nucleic acid. Curr Issues Mol Biol 1:89–104

    CAS  PubMed  Google Scholar 

  • Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PE, Egholm M, Berg RH, Buchardt O (1993) Peptide nucleic acids (PNAs): potential antisense and antigene agents. Anticancer Drug Des 8:53–63

    CAS  PubMed  Google Scholar 

  • Nielsen PE, Egholm M, Buchardt O (1994) Sequence-specific transcription arrest by peptide nucleic acid bound to the DNA template strand. Gene 149:139–145

    Article  CAS  PubMed  Google Scholar 

  • Nix DE, Swezey RR, Hector R, Galgiani JN (2009) Pharmacokinetics of nikkomycin z after single rising oral doses. Antimicrob Agents Chemother 53:2517–2521

    Article  CAS  PubMed  Google Scholar 

  • Nollet AJH, Hutino CM, Pandit UK (1969) Unconventional nucleotide analogues-I(N9-purinyl alpha-amino acids). Tetrahedron 25:5971–5981

    Article  CAS  PubMed  Google Scholar 

  • Oguma T, Ono T, Kajiwara T, Sato M, Miyahira Y, Arino H, Yoshihara Y, Tadakuma T (2009) CD4(+)CD8(+) thymocytes are induced to cell death by a small dose of puromycin via ER stress. Cell Immunol 260:21–27

    Article  CAS  PubMed  Google Scholar 

  • Ortiz E, Estrada G, Lizardi PM (1998) PNA molecular beacons for rapid detection of PCR amplicons. Mol Cell Probes 12:219–226

    Article  CAS  PubMed  Google Scholar 

  • Orum H, Nielsen PE, Egholm M, Berg RH, Buchardt O, Stanley C (1993) Single base pair mutation analysis by PNA directed PCR clamping. Nucleic Acids Res 21:5332–5336

    Article  CAS  PubMed  Google Scholar 

  • Orum H, Nielsen PE, Jorgensen M, Larsson C, Stanley C, Koch T (1995) Sequence-specific purification of nucleic acids by PNA-controlled hybrid selection. BioTechnique 19:472–480

    CAS  Google Scholar 

  • Perry-O’Keefe H, Yao XW, Coull JM, Fuchs M, Egholm M (1996) Peptide nucleic acid pre-gel hybridization: an alternative to Southern hybridization. Proc Natl Acad Sci USA 93:14670–14675

    Article  PubMed  Google Scholar 

  • Petersen KH, Buchardt O, Nielsen PE (1996) Synthesis and oligomerization of N delta-Boc-N alpha-(thymin-1-ylacetyl)ornithine. Bioorg Med Chem Lett 6:793–796

    Article  CAS  Google Scholar 

  • Plant A, Thompson P, Williams DM (2009) Application of the Ugi reaction for the one-pot synthesis of uracil polyoxin C analogues. J Org Chem 74:4870–4873

    Article  CAS  PubMed  Google Scholar 

  • Pothukanuri S, Pianowski Z, Winssinger N (2008) Expanding the scope and orthogonality of PNA synthesis. Eur J Org Chem 18:3141–3148

    Article  CAS  Google Scholar 

  • Raukas E, Kooli K, Raim T, Lidaks M, Krisane V, Paegle R, Lulle I (1982) Interaction of oligopeptides containing residues of dl-beta-(uracilyl-1)-, dl-beta-(adeninyl-9)-alpha-alanines and lysines with poly(A) and DNA. Stud Biophys 89:187–195

    CAS  Google Scholar 

  • Rebuffat AG, Nawrocki AR, Nielsen PE et al (2002) Gene delivery by a steroid-peptide nucleic acid conjugate. FASEB J 16:1426–1428

    CAS  PubMed  Google Scholar 

  • Roviello GN, Moccia M, Sapio R, Valente M, Bucci EM, Castiglione M, Pedone C, Perretta G, Benedetti E, Musumeci D (2006) Synthesis, characterization and hybridization studies of new nucleo-gamma-peptides based on diaminobutyric acid. J Pept Sci 12:829–835

    Article  CAS  PubMed  Google Scholar 

  • Roviello GN, Musumeci D, Moccia M, Castiglione M, Sapio R, Valente M, Bucci EM, Perretta G, Pedone C (2007) dabPNA: design, synthesis, and DNA binding studies. Nucleosides Nucleotides Nucleic Acids 26:1307–1310

    Article  CAS  PubMed  Google Scholar 

  • Roviello GN, Musumeci D, Bucci EM, Castiglione M, Cesarani A, Pedone C, Piccialli G (2008a) Evidences for complex formation between l-dabPNA and aegPNA. Bioorg Med Chem Lett 18:4757–4760

    Article  CAS  PubMed  Google Scholar 

  • Roviello GN, Musumeci D, Bucci EM, Castiglione M, Pedone C, Benedetti E, Sapio R, Valente M (2008b) Further studies on nucleopeptides with DABA-based backbone. Chem Eng Trans 14:393–400

    Google Scholar 

  • Roviello GN, Musumeci D, Castiglione M, Bucci EM, Pedone C, Benedetti E (2009a) Solid phase synthesis and RNA-binding studies of a serum-resistant nucleo-epsilon-peptide. J Pept Sci 15:155–160

    Article  CAS  PubMed  Google Scholar 

  • Roviello GN, Musumeci D, Moccia M, Castiglione M, Cesarani A, Bucci EM, Saviano M, Pedone C, Benedetti E (2009b) Evidences of complex formation between DABA-based nucleo-gamma-peptides with alternate configuration backbone. J Pept Sci 15:147–154

    Article  CAS  PubMed  Google Scholar 

  • Roviello GN, Gröschel S, Pedone C, Diederichsen U (2009c) Synthesis of novel MMT/acyl-protected nucleo alanine monomers for the preparation of DNA/alanyl-PNA chimeras. Amino Acids. doi:10.1007/s00726-009-0324-x

  • Roviello GN, Gaetano SD, Capasso D, Cesarani A, Bucci EM, Pedone C (2009d) Synthesis, spectroscopic studies and biological activity of a novel nucleopeptide with Moloney murine leukemia virus reverse transcriptase inhibitory activity. Amino Acids. doi:10.1007/s00726-009-0361-5

  • Roviello GN, Musumeci D, De Cristofaro A, Capasso D, Di Gaetano S, Bucci EM, Pedone C (2010a) Alternate dab-aegPNAs: synthesis, nucleic acid binding studies and biological activity. Mol Biosyst 6:189–195

    Article  CAS  Google Scholar 

  • Roviello GN, Musumeci D, Pedone C, Bucci EM (2010b) Synthesis, characterization and hybridization studies of an alternate nucleo-epsilon/gamma-peptide: complexes formation with natural nucleic acids. Amino Acids 38:103–111

    Article  CAS  PubMed  Google Scholar 

  • Roviello GN, Crescenzo C, Capasso D, Di Gaetano S, Franco S, Bucci EM, Pedone C (2010c) Synthesis of a novel Fmoc-protected nucleoaminoacid for the solid phase assembly of 4-piperidyl glycine/l-arginine-containing nucleopeptides and preliminary RNA interaction studies. Amino Acids. doi:10.1007/S00726-010-0532-4

  • Sandovsky-Losica H, Shwartzman R, Lahat Y, Segal E (2008) Antifungal activity against Candida albicans of nikkomycin Z in combination with caspofungin, voriconazole or amphotericin B. J Antimicrob Chemoth 62:635–637

    Article  CAS  Google Scholar 

  • Sforza S, Galaverna G, Dossena A, Corradini R, Marchelli R (2002) Role of chirality and optical purity in nucleic acid recognition by PNA and PNA analogs. Chirality 14:591–598

    Article  CAS  PubMed  Google Scholar 

  • Shvachkin YP, Mishin GP, Korshunova GA (1982) Advances and prospects in the chemistry of nucleoaminoacids and nucleopeptides. Russ Chem Rev 51:178–188

    Article  Google Scholar 

  • Simmons CG, Pitts AE, Mayfield LD, Shay JW, Corey DR (1997) Synthesis and permeability of PNA-peptide conjugates. Bioorg Med Chem Lett 7:3001–3007

    Article  CAS  Google Scholar 

  • Socher E, Bethge L, Knoll A, Jungnick N, Herrmann A, Seitz O (2008) Low-noise stemless PNA beacons for sensitive DNA and RNA detection. Angew Chem Int Ed Engl 47:9555–9559

    Article  CAS  PubMed  Google Scholar 

  • Soukchareun S, Tregear GW, Haralambidis J (1995) Preparation and characterization of antisense oligonucleotide-peptide hybrids containing viral fusion peptides. Bioconj Chem 6:43–53

    Article  CAS  Google Scholar 

  • Strasdeit H (2005) New studies on the Murchison meteorite shed light on the pre-RNA world. Chembiochem 6:801–803

    Article  CAS  PubMed  Google Scholar 

  • Svensen N, Diaz-Mochon JJ, Bradley M (2008) Microwave-assisted orthogonal synthesis of PNA–peptide conjugates. Tetrahedron Lett 49:6498–6500

    Article  CAS  Google Scholar 

  • Takemoto K (1985) Nucleic acid analogs: conformation and their functionalities Macromol. Chem Suppl 12:293–301

    Article  CAS  Google Scholar 

  • Thomson SA, Josey JA, Cadilla R, Gaul MD, Hassman CF, Luzzio MJ et al (1995) Fmoc mediated synthesis of peptide nucleic acids. Tetrahedron 51:6179–6194

    Article  CAS  Google Scholar 

  • Toure BB, Hall DG (2009) Natural product synthesis using multicomponent reaction strategies. Chem Rev 109:4439–4486

    Article  CAS  PubMed  Google Scholar 

  • Turner JJ, Jones S, Fabani MM, Ivanova G, Arzumanov AA, Gait MJ (2007) RNA targeting with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cells Mol Dis 38:1–7

    Article  CAS  PubMed  Google Scholar 

  • Uhlmann E, Peyman A, Breipohl G, Will D (1998) PNA: synthetic polyamide nucleic acids with unusual binding properties. Angew Chem Int Ed 37:2796–2823

    Article  CAS  Google Scholar 

  • van der Laan AC, van Amsterdam I, Tesser GI, van Boom JH, Kuyl-Yeheskiely E (1998) Synthesis of chirally pure ornithine based PNA analogues. Nucleoside Nucleotide Nucleic Acid 17:219–231

    Article  Google Scholar 

  • Veselkov AG, Demidov V, Nielsen PE, Frank-Kamenetskii MD (1996) A new class of genome rare cutters. Nucleic Acids Res 24:2483–2487

    Article  CAS  PubMed  Google Scholar 

  • Villa R, Folini M, Lualdi S, Veronese S, Daidone MG, Zaffaroni N (2000) Inhibition of telomerase activity by a cell-penetrating peptide nucleic acid construct in human melanoma cells. FEBS Lett 473:241–248

    Article  CAS  PubMed  Google Scholar 

  • Weiss A, Diederichsen U (2007) Uniformly nucleobase functionalized ß-peptide helices: Watson–Crick pairing of non-specific aggregation. Eur J Org Chem 5531–5539

  • Wojciechowski F, Hudson RHE (2007) Nucleobase Modifications in Peptide Nucleic Acids. Curr Top Med Chem 7:667–679

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Tanaka N (1966) Inhibition of protein synthesis by blasticidin S. II. Studies on the site of action in E. coli polypeptide synthesizing systems. J Biochem 60:632–642

    CAS  PubMed  Google Scholar 

  • Yamashita M, Tsurumi Y, Hosoda J, Komori T, Kohsaka M, Imanaka H (1984) Chryscandin, a novel peptidyl nucleoside antibiotic. I. Taxonomy, fermentation, isolation and characterization. J Antibiot 37:1279–1283

    CAS  PubMed  Google Scholar 

  • Yamazaki T, Komatsu K, Umemiya H, Hashimoto Y, Shudo K, Kagechika H (1997) Dinucleotide-analogous tetrapeptides. Specific triplex formation with complementary polynucleotides. Tetrahedron Lett 38:8363–8366

    Article  CAS  Google Scholar 

  • Zhou P, Wang M, Du L, Fisher GW, Waggoner A, Ly DH (2003) Novel binding and efficient cellular uptake of guanidine-based peptide nucleic acids (GPNA). J Am Chem Soc 125:6878–6879

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Claudia Crescenzo and Dr. Valentina Roviello for thoughtful discussions. We are grateful to the institutions that support our laboratory (Istituto di Biostrutture e Bioimmagini-Consiglio Nazionale delle Ricerche and Università degli Studi di Napoli ‘Federico II’).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ettore Benedetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roviello, G.N., Benedetti, E., Pedone, C. et al. Nucleobase-containing peptides: an overview of their characteristic features and applications. Amino Acids 39, 45–57 (2010). https://doi.org/10.1007/s00726-010-0567-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0567-6

Keywords

Navigation