Skip to main content
Log in

Automatic Optimization of Pulse Sequences Based on a Closed-Loop Control Strategy

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Generally, the pulse sequence parameters and acquisition parameters of nuclear magnetic resonance (NMR) logging tools are determined before logging and kept unchanged during logging. Because the detection area changes constantly during logging, the preset parameters are often not the best for different detection objectives, the energy consumption and sampling resolution will be reduced. To solve this problem, we propose a closed-loop control scheme for parameter optimization, which achieves the dynamic regulation of parameters according to the relaxation characteristics of the samples. The closed-loop control system has been implemented in a laboratory core analyzer to prove the effectiveness of the variable TE sequence as a reconnaissance sequence. When the sample changes, the control system can guide the control circuit to switch to the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence with appropriate parameters in a timely manner. Compared with conventional parameter setting methods, this scheme can better avoid insufficient attenuation of the echo train or excessive data collection caused by the improper setting of pulse train length while reducing energy consumption during measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. G.R. Coates, L.Z. Xiao, M.G. Prammer, NMR logging principles and applications (Gulf Publishing Company, Texas, USA, 1999)

    Google Scholar 

  2. J.A. Jackson, L.J. Burnett, J.F. Harmon, Remote (Inside-out) NMR. III. Detection of magnetic resonance in a remotely produced region of homogeneous magnetic field. J. Magn. Reson. 41(3), 411–421 (1980). https://doi.org/10.1016/0022-2364(80)90298-X

    Article  CAS  ADS  Google Scholar 

  3. M. Ronczka, M. Muller-Petke, Optimization of CPMG sequences to measure NMR transverse relaxation time T2 in borehole applications. Geosci. Instrum., Methods Data Syst. 1(2), 197–208 (2012). https://doi.org/10.5194/gi-1-197-2012

    Article  CAS  ADS  Google Scholar 

  4. Y.Q. Song, L.Z. Xiao, Optimization of multidimensional MR data acquisition for relaxation and diffusion. NMR Biomed. 33(12), e4238 (2020). https://doi.org/10.1002/nbm.4238

    Article  PubMed  Google Scholar 

  5. D. Ariando, C. Chen, M. Greer, S. Mandal, An autonomous, highly portable NMR spectrometer based on a low-cost System-on-Chip (SoC). J. Magn. Reson. 299, 74–92 (2019). https://doi.org/10.1016/j.jmr.2018.12.007

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Y.Q. Tang, Y.Q. Song, Realtime optimization of multidimensional NMR spectroscopy on embedded sensing devices. Sci. Rep. 9, 17486 (2019). https://doi.org/10.1038/s41598-019-53929-1

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  7. R.F. Sigal, D.L. Miller, J.E. Galford, R. Cherry, P.I. Day, A method for enhancing the vertical resolution of NMR logs, SPE Annu. Tech. Conf. Exhib, Dallas, Texas, 1–4 October 2000. https://doi.org/10.2118/63215-MS

  8. Y. Zhang, L.Z. Xiao, G.Z. Liao, B. Blümich, Direct correlation of internal gradients and pore size distributions with low field NMR. J. Magn. Reson. 267, 37–42 (2016). https://doi.org/10.1016/j.jmr.2016.04.009

    Article  CAS  PubMed  ADS  Google Scholar 

  9. W.L. Chen, L.Z. Xiao, Y. Zhang, G.Z. Liao, Q.J. Du, S.H. Luo, Z. Sun, Rapid T1–T2 measurement using drive equilibrium pulse sequence. Appl. Magn. Resonn. 47(10), 1159–1169 (2016). https://doi.org/10.1007/s00723-016-0824-2

    Article  Google Scholar 

  10. L.Z. Xiao, K. Huang, X. Li, H.T. Hu, Q.M. Xie, H.J. Yu, H.B. Liu, NMR echo train acquisition method for eliminating the ringing-down noise, Chinese Patent, 201110226201.X (2011)

  11. B. Nicot, M. Fleury, J. Leblond, Measurement of short NMR relaxation times: effect of radio-frequency pulse length. Cr. Chim. 11, 506–514 (2008). https://doi.org/10.1016/j.crci.2007.11.004

    Article  CAS  Google Scholar 

  12. Y.Q. Song, L. Venkataramanan, L. Burcaw, Determining the resolution of Laplace inversion spectrum. J. Chem. Phys. 122, 1–8 (2005). https://doi.org/10.1063/1.1858436

    Article  CAS  Google Scholar 

  13. M.D. Hürlimann, Well logging. eMagRes 1, 223–280 (2012)

    Google Scholar 

  14. C. Cao Mirth, D. Davies, D. Mickeon, D. Willis, G. Gubelin, M. Hurlimann, R. Freedman, R. Harris, R. Oldigs, An improved NMR tool design for faster logging, The SPWLA 40th Annu. Logging Symp., Oslo, Norway, 30 May-3 June 1999

  15. Z. Sun, L.Z. Xiao, G.Z. Liao, X. Li, X.L. Hou, Z. Chen, R.S. Lu, Design of a new LWD NMR tool with high mechanical reliability. J. Magn. Reson. 317, 106791 (2020). https://doi.org/10.1016/j.jmr.2020.106791

    Article  CAS  PubMed  Google Scholar 

  16. L.Z. Xiao, G.Z. Liao, F. Deng, H.B. Liu, G.P. Song, M.C. Li, Development of an NMR system for down-hole porous rocks. Micro. Meso. Mater. 205, 16–20 (2015). https://doi.org/10.1016/j.micromeso.2014.09.024

    Article  CAS  Google Scholar 

  17. L.Z. Xiao, R.H. Xie, G.Z. Liao, NMR logging for complex oil and gas reservoirs in China: theories and methods (in Chinese) (China Science Publishing, China, 2012)

    Google Scholar 

  18. G.H. Shi, L.Z. Xiao, S.H. Luo, Z.H. Long, Z.D. Wang, Optimization of shaped pulses for radio frequency excitation in NMR logging. Rev. Sci. Instrum. 92(11), 114502 (2021). https://doi.org/10.1063/5.0068580

    Article  CAS  PubMed  ADS  Google Scholar 

  19. G.Z. Liao, S.H. Luo, L.Z. Xiao, Borehole nuclear magnetic resonance study at the China University of Petroleum. J. Magn. Reson. 324, 106914 (2021). https://doi.org/10.1016/j.jmr.2021.106914

    Article  CAS  PubMed  Google Scholar 

  20. S. Mandal, T.W. Borneman, V.D.M. Koroleva, M.D. Hurlimann, Direct optimization of signal-to-noise ratio of CPMG-like sequences in inhomogeneous fields. J. Magn. Reson. 247, 54–66 (2014). https://doi.org/10.1016/j.jmr.2014.08.012

    Article  CAS  PubMed  ADS  Google Scholar 

  21. V.D.M. Koroleva, S. Mandal, Y.Q. Song, M.D. Hurlimann, Broadband CPMG sequence with short composite refocusing pulses. J. Magn. Reson. 230, 64–75 (2013). https://doi.org/10.1016/j.jmr.2013.01.006

    Article  CAS  PubMed  ADS  Google Scholar 

  22. S.H. Luo, L.Z. Xiao, F.R. Zong, X. Li, G.Z. Liao, G.H. Shi, B.Y. Men, X. Zhang, Z.D. Wang, Z. Sun, F. Deng, Inside-out azimuthally selective NMR tool using array coil and capacitive decoupling. J. Magn. Reson. 315, 106735 (2020). https://doi.org/10.1016/j.jmr.2020.106735

    Article  CAS  PubMed  Google Scholar 

  23. Y. Zhang, L.Z. Xiao, G.Z. Liao, Spatially resolved pore-size-T2 correlations for low-field NMR. Micro. Meso. Mater. 290, 109666 (2019). https://doi.org/10.1016/j.micromeso.2017.05.024

    Article  CAS  Google Scholar 

  24. Y. Zhang, L.Z. Xiao, X. Li, G.Z. Liao, T1-D-T2 correlation of porous media with compressed sensing at low-field NMR. Magn. Reon. Imaging. 56, 174–180 (2019). https://doi.org/10.1016/j.mri.2018.09.028

    Article  CAS  Google Scholar 

  25. B.Q. Sun, M. Skalinski, K.J. Dunn, NMR T2 inversion along the depth dimension. API Conf. Proc. 1081, 87–90 (2008). https://doi.org/10.1063/1.3058555

    Article  ADS  Google Scholar 

  26. Y. Zhang, L.Z. Xiao, G.Z. Liao, Y.Q. Song, Direct correlation of diffusion and pore size distributions with low field NMR. J. Magn. Reson. 269, 196–202 (2016). https://doi.org/10.1016/j.jmr.2016.06.013

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Beijing Limecho Technology Co., Ltd. We would like to thank Mr. Liu for his valuable help in carrying out many of the experiments.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No.42204106 and 51974337).

Author information

Authors and Affiliations

Authors

Contributions

LZX, GZL, and SHL conceived the idea and made a number of recommendations. GHS, JZ, and HXL proposed design plans. GHS and XLH conducted the experiments. Both authors contributed to writing and revising the manuscript and contributed to analyzing and interpreting the results.

Corresponding author

Correspondence to Guanghui Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

This research did not contain any studies involving animal or human participants, nor did it take place in any private or protected areas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, G., Xiao, L., Liao, G. et al. Automatic Optimization of Pulse Sequences Based on a Closed-Loop Control Strategy. Appl Magn Reson 55, 429–441 (2024). https://doi.org/10.1007/s00723-023-01633-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01633-9

Navigation