Skip to main content
Log in

Temperature Dependencies of the Spin Relaxation Times for the Isotopically Pure Chromium Impurity 53Cr3+ in the Yttrium Orthosilicate Single Crystal Y228SiO5

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The temperature dependencies of the spin–lattice relaxation time and the phase relaxation time of 53Cr3+ ion in the Y228SiO5 single crystal are measured at the anti-crossing point via pulsed electron paramagnetic resonance technique at X-band frequencies and in the temperature range from 5 to 80 K. It is found that the phase relaxation time does not change rapidly near the anti-crossing point, whereas in optical experiments with rare-earth ions, the phase relaxation time decreases significantly with a slight deviation of the magnetic field from the anti-crossing point. The effect of spin dynamical decoupling on the phase relaxation time is measured using the Carr–Purcell–Meiboom–Gill (CPMG) multi-pulse sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Welinski, A. Tiranov, M. Businger, A. Ferrier, M. Afzelius, P. Goldner, Phys. Rev. X 10, 031060 (2020). https://doi.org/10.1103/PhysRevX.10.031060

    Article  Google Scholar 

  2. M. Businger, A. Tiranov, K.T. Kaczmarek, S. Welinski, Z. Zhang, A. Ferrier, P. Goldner, M. Afzelius, Phys. Rev. Lett. 124, 053606 (2020). https://doi.org/10.1103/PhysRevLett.124.053606

    Article  ADS  Google Scholar 

  3. A. Holzäpfel, J. Etesse, K.T. Kaczmarek, A. Tiranov, N. Gisin, M. Afzelius, New J. Phys. 22, 0630090 (2020). https://doi.org/10.1088/1367-2630/ab8aac

    Article  Google Scholar 

  4. N. Kukharchyk, D. Sholokhov, O. Morozov, S.L. Korableva, A.A. Kalachev, P.A. Bushev, Opt. Express 28, 29166–29177 (2020). https://doi.org/10.1364/OE.400222

    Article  ADS  Google Scholar 

  5. A.A. Sukhanov, V.F. Tarasov, R.M. Eremina, I.V. Yatsyk, R.F. Likerov, A.V. Shestakov, Yu.D. Zavartsev, A.I. Zagumennyi, S.A. Kutovoi, Appl. Magn. Reson. 48, 589–596 (2017). https://doi.org/10.1007/s00723-017-0888-7

    Article  Google Scholar 

  6. R.M. Eremina, V.F. Tarasov, K.B. Konov, T.P. Gavrilova, A.V. Shestakov, V.A. Shustov, S.A. Kutovoi, Yu.D. Zavartsev, Appl. Magn. Reson. 49, 53–60 (2018). https://doi.org/10.1007/s00723-017-0966-x

    Article  Google Scholar 

  7. V.A. Vazhenin, A.P. Potapov, G.S. Shakurov, A.V. Fokin, MYu. Artyomov, V.A. Isaev, Phys. Solid State 60, 2039–2045 (2018). https://doi.org/10.21883/FTT.2018.10.46530.054

    Article  ADS  Google Scholar 

  8. V.F. Tarasov, I.V. Yatsyk, R.F. Likerov, A.V. Shestakov, R.M. Eremina, Yu.D. Zavartsev, S.A. Kutovoi, Opt. Mater. 105, 109913 (2020). https://doi.org/10.1016/j.optmat.2020.109913

    Article  Google Scholar 

  9. V.A. Vazhenin, A.P. Potapov, K.A. Subbotin, D.A. Lis, MYu. Artyomov, V.V. Sanina, E.V. Chernova, A.V. Fokin, Opt. Mater. 117, 111107 (2021). https://doi.org/10.1016/j.optmat.2021.111107

    Article  Google Scholar 

  10. V.K. Sewani, R.J. Stöhr, R. Kolesov, H.H. Vallabhapurapu, T. Simmet, A. Morello, A. Laucht, Phys. Rev. B 102, 104114 (2020). https://doi.org/10.1103/PhysRevB.102.104114

    Article  ADS  Google Scholar 

  11. J.S. Thorp, G.L. Sturgess, G. Broun, J. Mater. Sci. 7, 215–219 (1972). https://doi.org/10.1007/BF00554185

    Article  ADS  Google Scholar 

  12. D.V. Azamat, A. Dejneka, J. Lancok, V.A. Trepakov, L. Jastrabik, A.G. Badalyan, J. Appl. Phys. 113(17), 174106 (2013). https://doi.org/10.1063/1.4804062

    Article  ADS  Google Scholar 

  13. I.N. Kurkin, K. P. Cherkov, Yu. K. Chirkin, Fizika Tverdogo Tela 27(2) (1985) (in russian)

  14. V.V. Kuzmin, I.N. Kurkin, L.L. Sedov, A.A. Solodukhin, Fizika Tverdogo Tela 34(8), 2337–2341 (1992)

    Google Scholar 

  15. B.A. Maksimov, Yu.A. Kharitonov, V.V. Ilyukhin, N.V. Belov, Sov. Phys. Dokl. 13, 1188–1190 (1969)

    ADS  Google Scholar 

  16. E. Fraval, M.J. Sellars, J.J. Longdell, Phys. Rev. Lett. 92, 077601 (2004). https://doi.org/10.1103/PhysRevLett.92.077601

    Article  ADS  Google Scholar 

  17. J.J. Longdell, A.L. Alexander, M.J. Sellars, Phys. Rev. B 74, 195101 (2006). https://doi.org/10.1103/PhysRevB.74.195101

    Article  ADS  Google Scholar 

  18. M. Lovrić, P. Glasenapp, D. Suter, B. Tumino, A. Ferrier, P. Goldner, M. Sabooni, L. Rippe, S. Kröll, Phys. Rev. B 84, 104417 (2011). https://doi.org/10.1103/PhysRevB.84.104417

    Article  ADS  Google Scholar 

  19. S. Meiboom, D. Gill, Rev. Sci. Instrum. 29, 688–691 (1958). https://doi.org/10.1063/1.1716296

    Article  ADS  Google Scholar 

  20. H.Y. Carr, E.M. Purcell, Phys. Rev. 94, 630–638 (1954). https://doi.org/10.1103/PhysRev.94.630

    Article  ADS  Google Scholar 

  21. H.L. Flanagan, D.J. Singel, J. Chem. Phys. 89, 2585–2586 (1988). https://doi.org/10.1063/1.455054

    Article  ADS  Google Scholar 

  22. A. Schweiger, G. Jeschke, Prinsiples of Pulse Electron Paramagnetic Resonance (Oxford University Press, Oxford, 2001), p. 216

    Google Scholar 

  23. K.M. Salikhov, A.G. Semenov, Yu.D. Tsvetkov, Electron Spin Echoes and Their Applications (Nauka, Novosibirsk, 1976)

    Google Scholar 

  24. R.F. Likerov, V.F. Tarasov, A.A. Sukhanov, A.V. Shestakov, R.M. Eremina, Yu.D. Zavartsev, S.A. Kutovoi, Magn. Reson. Solids 22, 20201 (2020). https://doi.org/10.26907/mrsej

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Vladimir Shustov from Zavoisky Physical-Technical Institute for the X-ray diffraction measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Likerov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhanov, A.A., Tarasov, V.F., Likerov, R.F. et al. Temperature Dependencies of the Spin Relaxation Times for the Isotopically Pure Chromium Impurity 53Cr3+ in the Yttrium Orthosilicate Single Crystal Y228SiO5. Appl Magn Reson 52, 1175–1185 (2021). https://doi.org/10.1007/s00723-021-01366-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01366-7

Navigation