Skip to main content
Log in

Effect of NaCl Solution on Swelling Characteristics of Bentonite with Different Diffuse Double Layers

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Soil particles generally possess negative ions, and form an electronic field nearby the particles, which results in generating diffuse double layers on the surface of the particles. There is no diffuse double layer at dry state, and it develops diffuse double layers first when wetted by solution. This paper investigates the effect of NaCl solution on swelling characteristics of bentonite with different initial water contents by performing a series of wetting tests. The wetting test results indicate that when the initial water content is less than 10%, the NaCl solution has no effect on the swelling. When the initial water content is larger than 10%, the swelling strain decreases with increase in the NaCl solution concentration. The nuclear magnetic resonance (NMR) tests on compacted bentonite specimens were performed. The test results indicate that the strongly bound water content is 10%, which is similar to that by other method. The NMR tests on full wetting specimens, whose initial water content is less than 10%, show that the NaCl solution has no effect on NMR tests results. When the initial water content is larger than 10%, the proportion of curves from the NMR tests decreases with increase in the NaCl solution concentration. The NMR tests results indicate that the swelling occurred mainly in the intra-aggregate rather than in the inter-aggregate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Alawaji, Appl. Clay Sci. 15(3), 411–430 (1999)

    Article  Google Scholar 

  2. J.F. Andrew, N. Nikolaus, J.L. David, Magn. Reson. Imaging 23(2), 317–319 (2005)

    Article  Google Scholar 

  3. A.A. Behroozmand, K. Keating, E. Auken, Surv. Geophys. 36(1), 27–85 (2015)

    Article  ADS  Google Scholar 

  4. T.V. Bharat, D.S. Das, Appl. Clay Sci. 136, 164–175 (2017)

    Article  Google Scholar 

  5. T.V. Bharat, A. Sridharan, Clay Clay Miner. 63, 30–42 (2015)

    Article  ADS  Google Scholar 

  6. P.B. Black, A.R. Tice, Water Resour. Res. 25, 2205–2210 (1989)

    Article  ADS  Google Scholar 

  7. G.H. Bolt, J. Colloid Sci. 10(2), 206–218 (1955)

    Article  Google Scholar 

  8. G.H. Bolt, Geotechnique 6, 86–93 (1956)

    Article  Google Scholar 

  9. K.R. Brownstein, C.E. Tarr, Phys. Rev. 19(6), 2446–2453 (1979)

    Article  ADS  Google Scholar 

  10. G.R. Coates, L.L. Xiao, M.G. Prammer, NMR Logging Principles and Application (Halliburton Energy Services Publication, Houston, 1999)

    Google Scholar 

  11. S. Costabel, U. Yaramanci, Water Resour. Res. 49, 2068–2079 (2013)

    Article  ADS  Google Scholar 

  12. A. Dominijanni, M. Manassero, S. Puma, Geotechnique 63(3), 191–205 (2013)

    Article  Google Scholar 

  13. C. Di Maio, G.B. Fenelli, Geotechnique 44(4), 217–226 (1994)

    Article  Google Scholar 

  14. S.V. Dvinskikh, K. Sztkowski, I. Furo, J. Magn. Reson. 198(2), 146–150 (2009)

    Article  ADS  Google Scholar 

  15. M. Fam, J.C. Santamarina, Can. Geotech. J. 33(3), 515–522 (1996)

    Article  Google Scholar 

  16. S. Frydman, R. Baker, Int. J. Geomech. 9(6), 250–257 (2009)

    Article  Google Scholar 

  17. A. Gajo, B. Loret, J. Mech. Phys. Solids 55(8), 1762–1801 (2007)

    Article  ADS  Google Scholar 

  18. J. Goncalves, P. Rousseau-Gueutin, G. Marsily, P. Cosenza, S. Violette, Water Resour. Res. 76(11), 98–118 (2013)

    Google Scholar 

  19. M. Kaczmarek, T. Hueckel, Transp. Porous Media 32(1), 49–74 (1998)

    Article  Google Scholar 

  20. M. Khorshidi, N. Lu, A. Khorshidi, Vadose Zone J. 15(11), 1–12 (2016)

    Article  Google Scholar 

  21. R.L. Kleinberg, in New Techniques in Sediment Core Analysis, vol. 267, ed. by R.G. Rothwell (Geological Society, Special Publications, London, 2006), pp. 179–192

    Google Scholar 

  22. L.C. Liu, Colloids Surf. A 434, 303–318 (2013)

    Article  Google Scholar 

  23. N. Lu, M. Khorshidi, J. Geotechn. Geoenviron. Eng. 141(8), 04015032 (2015)

    Article  Google Scholar 

  24. T.T. Ma, C.F. Wei, X.L. Xia, P. Chen, J. Eng. Mech. 142(11), 04016088 (2016)

    Article  Google Scholar 

  25. J.K. Mitchell, K. Soga, Fundamentals of Soil Behavior (Wiley, New York, 2005)

    Google Scholar 

  26. R. Moore, Geotechnique 41(1), 35–47 (1991)

    Article  Google Scholar 

  27. G. Musso, E. Romero, G. Della Vecchia, Geotechnique 63(3), 206–220 (2013)

    Article  Google Scholar 

  28. R.E. Olson, G. Mesri, J. Soil Mech. Found. Div. ASCE 96(6), 160–170 (1970)

    Google Scholar 

  29. T. Sanden, R. Goudarzi, M. De Combarieum, M. Akesson, H. Hokamrk, Phys. Chem. Earth 32, 77–92 (2007)

    Article  Google Scholar 

  30. A. Sridharan, M.S. Jayadeva, Geotechnique 32(2), 133–144 (1982)

    Article  Google Scholar 

  31. A. Sridharan, G.V. Rao, Geotechnique 23(3), 359–382 (1973)

    Article  Google Scholar 

  32. D.A. Sun, L. Zhang, J. Li, B.C. Zhang, Appl. Clay Sci. 105, 207–2016 (2015)

    Article  Google Scholar 

  33. H.H. Tian, C.F. Wei, H.Z. Wei, R.T. Yan, P. Chen, Appl. Magn. Reson. 45(1), 49–61 (2014)

    Article  Google Scholar 

  34. S. Tripathy, A. Sridharan, T. Schanz, Can. Geotech. J. 41, 437–450 (2004)

    Article  Google Scholar 

  35. M. Tuller, D. Or, Water Resour. Res. 41(9), 319–335 (2005)

    Article  Google Scholar 

  36. H. van Olphen, Clays Clay Miner. 4, 204–224 (1956)

    Article  Google Scholar 

  37. H. van Olphen,  J. Colloid Sci. 19(4), 313–322 (1964)

    Article  Google Scholar 

  38. D. Walsh, E.D. Grunewald, P. Turner, A. Hinnell, T.P.A. Ferre, Near Surf. Geophys. 12(2), 271–284 (2014)

    Google Scholar 

  39. C.F. Wei, Vadose Zone J. 13(9), 1–21 (2014)

    Article  Google Scholar 

  40. P. Witteveen, A. Ferrari, L. Laloui, Geotechnique 63(3), 244–255 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We express our gratitude for the grants provided by the National Natural Science Foundation of China (Nos. 41630633, 11672172 and 41502301). We appreciate Guangxi Key Laboratory of New Energy and Building Energy Saving, Guilin University of Technology, for supplying the instrument of NMR tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De’an Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Sun, D. & Gao, Y. Effect of NaCl Solution on Swelling Characteristics of Bentonite with Different Diffuse Double Layers. Appl Magn Reson 49, 725–737 (2018). https://doi.org/10.1007/s00723-018-1009-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1009-y

Navigation