Skip to main content
Log in

A Fast and Convenient Way to Predict Relaxation During a Frequency-Selective Adiabatic Hyperbolic Secant Pulse (HS1 Sech Pulse)

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Frequency-selective inversion of magnetization is often achieved by long, low-power adiabatic RF pulses. Because these pulses can last hundreds of milliseconds, substantial relaxation of magnetization can occur during their application. Recently, a numerical model was introduced that allows an approximation of relaxation during frequency-selective adiabatic pulses for fast-tumbling small molecules in non-viscous solutions using only standard T1 and T2 relaxation times. This model is now extended to conditions in which net magnetization is not at its thermodynamic equilibrium prior to the adiabatic inversion. Simulated and experimental data reveal that the amplitude of net magnetization after an adiabatic inversion with the HS1 hyperbolic secant pulse can be approximated by a linear function of the magnetization before the pulse, depending only on T1 and T2 relaxation. The model presented here is particularly applicable to solvent-suppression sequences that utilize multiple adiabatic inversions, such as the multiple inversion-recovery nulling sequence EXCEPT. Tabulated slope and intercept values for the linear relationship are provided to facilitate a convenient optimization of pulse sequences that utilize HS1 frequency-selective adiabatic inversions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Garwood, K. Uǧurbil, in: In-Vivo Magnetic Resonance Spectroscopy I: Probeheads and Radiofrequency Pulses Spectrum Analysis. NMR (Basic Principles and Progress) 26, M. Rudin, ed. (Springer, Heidelberg, 1992), pp. 109–147

  2. S. Michaeli, D.J. Sorce, D. Idiyatullin, K. Ugurbil, M. Garwood, J. Magn. Reson. 169(2), 293–299 (2004)

    Article  ADS  Google Scholar 

  3. D.J. Sorce, S. Michaeli, M. Garwood, Curr. Anal. Chem. 3(3), 239–251 (2007)

    Article  Google Scholar 

  4. S. Mangia, T. Liimatainen, M. Garwood, S. Michaeli, Magn. Reson. Imag. 27(8), 1074–1087 (2009)

    Article  Google Scholar 

  5. A.R. Pfaff, C.E. McKee, K. Woelk, J. Magn. Reson. 284, 99–103 (2017)

  6. A. Tannus, M. Garwood, NMR Biomed. 10(8), 423–434 (1997)

    Article  Google Scholar 

  7. M. Garwood, L. DelaBarre, J. Magn. Reson. 153(2), 155–177 (2001)

    Article  ADS  Google Scholar 

  8. E.T. Satterfield, A.R. Pfaff, W. Zhang, L. Chi, R.E. Gerald 2nd, K. Woelk, J. Magn. Reson. 268, 68–72 (2016)

    Article  ADS  Google Scholar 

  9. S. Mani, J. Pauly, S. Conolly, C. Meyer, D. Nishimura, Magn. Reson. Med. 37(6), 898–905 (1997)

    Article  Google Scholar 

  10. W.T. Dixon, M. Sardashti, M. Castillo, G.P. Stomp, Magn. Reson. Med. 18(2), 257–268 (1991)

    Article  Google Scholar 

  11. M.S. Silver, R.I. Joseph, D.I. Hoult, J. Magn. Reson. 59(2), 347–351 (1984)

    ADS  Google Scholar 

  12. R. Bro, S. DeJong, J. Chemometr. 11(5), 393–401 (1997)

    Article  Google Scholar 

  13. R.A. De Graaf, Y. Luo, M. Garwood, K. Nicolay, J. Magn. Reson. B. 113(1), 35–45 (1996)

    Article  Google Scholar 

  14. R.A. De Graaf, K. Nicolay, Magn. Reson. Med. 40(5), 690–696 (1998)

    Article  Google Scholar 

  15. Y.A. Tesiram, F. Separovic, Concepts Magn. Reson. 25A(1), 1–17 (2005)

    Article  Google Scholar 

  16. F. Bloch, Phys. Rev. 105(4), 1206–1222 (1957)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work described here did not utilize grant funds from public, commercial, or non-profit organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalise R. Pfaff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfaff, A.R., Woelk, K. A Fast and Convenient Way to Predict Relaxation During a Frequency-Selective Adiabatic Hyperbolic Secant Pulse (HS1 Sech Pulse). Appl Magn Reson 49, 479–491 (2018). https://doi.org/10.1007/s00723-018-0989-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-0989-y

Navigation