Skip to main content
Log in

EPR Uniform Field Signal Enhancement by Dielectric Tubes in Cavities

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The dielectric tube resonator (DTR) for electron paramagnetic resonance spectroscopy is introduced. It is defined as a metallic cylindrical TE011 microwave cavity that contains a dielectric tube centered on the axis of the cylinder. Contour plots of dimensions of the metallic cylinder to achieve resonance at 9.5 GHz are shown for quartz, sapphire, and rutile tubes as a function of wall thickness and average radius. These contour plots were developed using analytical equations and confirmed by finite-element modeling. They can be used in two ways: design of the metallic cylinder for use at 9.5 GHz that incorporates a readily available tube such as a sapphire tube intended for NMR and design of a custom procured tube for optimized performance for specific sample-size constraints. The charts extend to the limiting condition where the dielectric fills the tube. However, the structure at this limit is not a dielectric resonator due to the metal wall and does not radiate. In addition, the uniform field (UF) DTR is introduced. Development of the UF resonator starting with a DTR is shown. The diameter of the tube remains constant along the cavity axis, and the diameter of the cylindrical metallic enclosure increases at the ends of the cavity to satisfy the uniform field condition. This structure has advantages over the previously developed UF TE011 resonators: higher resonator efficiency parameter Λ, convenient overall size when using sapphire tubes, and higher quality data for small samples. The DTR and UF DTR structures fill the gap between free space and dielectric resonator limits in a continuous manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.C. Rempel, C.E. Ward, R.T. Sullivan, M.W. St. Clair, H.E. Weaver, “Gyromagnetic resonance method and apparatus,” U.S. Pat. 3,122,703 (1964)

  2. J.S. Hyde, G.R. Eaton, S.S. Eaton, Concepts Magn Reson. Part A Bridg. Educ. Res. 28A, 85–86 (2006)

    Google Scholar 

  3. L.G. Stoodley, J. Electron Control. 14, 531–546 (1963)

    Article  Google Scholar 

  4. J.S. Hyde, J. Chem. Phys. 43, 806–1818 (1965)

    Article  Google Scholar 

  5. J.S. Hyde, “Microwave cavity resonator”, U.S. Pat. 3,250,985 (1966)

  6. W.M. Walsh Jr., L.W. Rupp Jr., Rev. Sci. Insrum. 57, 2078–2279 (1986)

    Article  Google Scholar 

  7. R.W. Dykstra, G.W. Markham, J. Magn. Reson. 69, 350–355 (1986)

    ADS  Google Scholar 

  8. A. Sienkiewicz, K. Qu, Rev. Sci. Instrum. 65, 68–74 (1994)

    Article  ADS  Google Scholar 

  9. M. Jaworski, A. Sienkiewicz, C.P. Scholes, J. Magn. Reson. 1969–1992(124), 87–96 (1997)

    Article  Google Scholar 

  10. I.N. Geifman, I.S. Golovina, V.I. Kofman, R.E. Zusmanov, Ferroelectrics 234, 81 (1999)

    Article  Google Scholar 

  11. A. Sienkiewicz, M. Jaworski, B.G. Smith, P.G. Fajer, C.P. Scholes, J. Magn. Reson. 143, 144–152 (2000)

    Article  ADS  Google Scholar 

  12. Y.E. Nesmelov, J.T. Surek, D.D. Thomas, J. Magn. Reson. 153, 7–14 (2001)

    Article  ADS  Google Scholar 

  13. A. Blank, E. Stavitski, H. Levanon, F. Gubaydullin, Rev. Sci. Instrum. 74, 2853–2859 (2003)

    Article  ADS  Google Scholar 

  14. S.M. Mattar, A.H. Emwas, Chem. Phys. Lett. 368, 724–731 (2003)

    Article  ADS  Google Scholar 

  15. I.N. Geifman, I.S. Golovina, Concepts Magn. Reson. 26B, 46 (2005)

    Article  Google Scholar 

  16. A. Sienkiewicz, B. Vileno, S. Garaj, M. Jaworski, L. Forró, J. Magn. Reson. 177, 261–273 (2005)

    Article  ADS  Google Scholar 

  17. I.S. Golovina, I.N. Geifman, A. Belous, J. Magn. Reson. 195, 52–59 (2008)

    Article  ADS  Google Scholar 

  18. R.R. Mett, J.W. Sidabras, I.S. Golovina, J.S. Hyde, Rev. Sci. Instrum. 79, 094702 (2008)

    Article  ADS  Google Scholar 

  19. S.M. Mattar, S.Y. Elnaggar, J. Magn. Reson. 209, 174–182 (2011)

    Article  ADS  Google Scholar 

  20. A. Raitsimring, A. Astashkin, J.H. Enemark, A. Blank, Y. Twig, Y. Song, T.J. Meade, Appl. Magn. Reson. 42, 441–452 (2012)

    Article  Google Scholar 

  21. S.Y. Elnaggar, R. Tervo, S.M. Mattar, J. Magn. Reson. 238, 1–7 (2014)

    Article  ADS  Google Scholar 

  22. S.Y. Elnaggar, R. Tervo, S.M. Mattar, J. Magn. Reson. 242, 57–66 (2014)

    Article  ADS  Google Scholar 

  23. S.Y. Elnaggar, R. Tervo, S.M. Mattar, J. Magn. Reson. 245, 50–57 (2014)

    Article  ADS  Google Scholar 

  24. S.Y. Elnaggar, R.J. Tervo, S.M. Mattar, J. Appl. Phys. 118, 194901 (2015)

    Article  ADS  Google Scholar 

  25. H.Y. Yee, I.E.E.E. Trans, Microwave Theory Tech. 13, 256 (1965)

    Article  Google Scholar 

  26. D.M. Pozar, Microwave Engineering, 4th edn. (Addison-Wesley, New York, 1990), secs. 7.5, 7.8

  27. M.W. Pospieszalski, I.E.E.E. Trans, Microwave Theory Tech. 27, 233 (1979)

    Article  Google Scholar 

  28. F.J. Rosenbaum, Rev. Sci. Instrum. 35, 1550–1554 (1964)

    Article  ADS  Google Scholar 

  29. J.S. Hyde, “EPR spectrometer resonant cavity”, U.S. Pat. 3,878,454 (1975)

  30. J.S. Hyde, in Handbook of Microwave Technology, vol. 2, ed. by T.K. Ishii (Academic Press, New York, 1995), pp. 365–402

  31. J.S. Hyde, W. Froncisz, in Advanced EPR: Applications in Biology and Biochemistry, ed. by A.J. Hoff (Elsevier, Amsterdam, 1989), pp. 277–306

  32. G. Feher, Bell Syst. Tech. J. 36, 450–483 (1956)

    Google Scholar 

  33. W. Froncisz, J.S. Hyde, J. Magn. Reson. 47, 515–521 (1982)

    ADS  Google Scholar 

  34. R.R. Mett, W. Froncisz, J.S. Hyde, Rev. Sci. Instrum. 72, 4188–4200 (2001)

    Article  ADS  Google Scholar 

  35. J.R. Anderson, R.R. Mett, J.S. Hyde, Rev. Sci. Instrum. 73, 3027–3037 (2002)

    Article  ADS  Google Scholar 

  36. J.S. Hyde, R.R. Mett, J.R. Anderson, Rev. Sci. Instrum. 73, 4003–4009 (2002)

    Article  ADS  Google Scholar 

  37. J.S. Hyde, R.R. Mett, W. Froncisz, J.R. Anderson, “Cavity resonator for electron paramagnetic resonance spectroscopy having axially uniform field”, U.S. Patent 6,828,789 (2004)

  38. R.R. Mett, J.W. Sidabras, J.S. Hyde, Appl. Magn. Reson. 31, 571–587 (2007)

    Article  Google Scholar 

  39. S. Ramo, J.R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1965), sec. 8.04

  40. J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), sec. 8.3

  41. A.R. Von Hippel, Dielectric Materials and Applications (Artech House, Boston, 1954)

    Google Scholar 

  42. M.E. Tobar, J. Krupka, E.N. Ivanov, R.A. Woode, J. Appl. Phys. 83, 1604–1609 (1998)

    Article  ADS  Google Scholar 

  43. W.J. Ellison, J. Phys. Chem. Ref. Data 36(1), 1–18 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  44. J.W. Sidabras, R.R. Mett, J.S. Hyde, J. Magn. Reson. 172, 333–341 (2005)

    Article  ADS  Google Scholar 

  45. J.S. Hyde, J.W. Sidabras, R.R. Mett, Resonators for multifrequency EPR of spin labels [chapter 5.2], in Multifrequency Electron Paramagnetic Resonance, Theory and Applications, ed. by S. Misra (Wiley, Berlin, 2011), pp. 244–270

    Google Scholar 

  46. Saint-Gobain Crystals. EFG Sapphire Tubes. Milford, NH: n.p. (2006)

  47. J.S. Hyde, J. Chem. Phys. 43, 1806 (1965)

    Article  ADS  Google Scholar 

  48. R.R. Mett, J.S. Hyde, Rev. Sci. Instrum. 76, 014702 (2005)

    Article  ADS  Google Scholar 

  49. R.R. Mett, J.R. Anderson, J.W. Sidabras, J.S. Hyde, Rev. Sci. Instrum. 76, 094702 (2005)

    Article  ADS  Google Scholar 

  50. R.R. Mett, J.W. Sidabras, J.S. Hyde, Appl. Magn. Reson. 35, 285–318 (2008)

    Article  Google Scholar 

  51. J.S. Hyde, J. Gajdzinski, Rev. Sci. Instrum. 59, 1352 (1988)

    Article  ADS  Google Scholar 

  52. J.W. Sidabras, T. Sarna, R.R. Mett, J.S. Hyde, J. Magn. Reson. 282, 129–135 (2017)

    Article  Google Scholar 

  53. L. Mainali, J.W. Sidabras, T.G. Camenisch, J.J. Ratke, M. Raguz, J.S. Hyde, W.K. Subczynski, App. Magn. Reson. 45, 1343–1358 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award Number P41EB001980. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S. Hyde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyde, J.S., Mett, R.R. EPR Uniform Field Signal Enhancement by Dielectric Tubes in Cavities. Appl Magn Reson 48, 1185–1204 (2017). https://doi.org/10.1007/s00723-017-0935-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0935-4

Navigation