Skip to main content
Log in

Quantitative Effect of Magnetic Field Strength on PEGylated Superparamagnetic Iron Oxide Nanoparticles

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

With promising applications of superparamagnetic iron oxide nanoparticles (SPIO) in magnetic resonance imaging (MRI) and targeted monitoring of molecular and cellular processes, many different samples of these nanoparticles (NPs) with different compositions synthesized each year. The main challenge in this way is to generate enough contrast that could be traceable on images. In order to compensate for the low quantity of contrast agents in desired sites, surface engineering has to be done to enhance relaxation rates. As many factors such as magnetic field strength can affect relaxation rates of NPs, knowledge of the relation between field strength and relaxation rates is essential to compare results of different fields and choosing an optimum agent for a specific field. In this study, we evaluate the effects of magnetic field strengths of 0.35, 1.5, and 3 T on relaxation rates of PEGylated SPIOs. Longitudinal and transverse relaxation rates of all samples with various concentrations were analyzed quantitatively on appropriate spin–echo sequences. Our results suggest that the increasing of the field strength leads to a marked decrease of longitudinal relaxivity. In the case of transverse relaxivity, all NPs showed an increase between 0.35 and 1.5 T. Upon further increasing the field strength, relaxation rates only slightly increased except for two samples that showed saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Banci, I. Bertini, C. Luchinat, Nuclear and Electron Relaxation: the Magnetic Nucleus-Unpaired Electron Coupling in Solution (Wiley-VCH, Weinheim, 1991)

    Google Scholar 

  2. Y. Gossuin, P. Gillis, A. Hocq, Q.L. Vuong, A. Roch, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 299–310 (2009)

    Article  Google Scholar 

  3. R. Jahanbakhsh, F. Atyabi, S. Shanehsazzadeh, Z. Sobhani, M. Adeli, R. Dinarvand, Daru 21, 53–62 (2013)

    Article  Google Scholar 

  4. A. Lahooti, S. Sarkar, S. Laurent, S. Shanehsazzadeh, Contrast Media Mol. Imaging 11, 428–447 (2016)

    Article  Google Scholar 

  5. N. Bloembergen, L. Morgan, J. Chem. Phys. 34, 842–850 (1961)

    Article  ADS  Google Scholar 

  6. G.H. Simon, J. Bauer, O. Saborovski, Y. Fu, C. Corot, M.F. Wendland, H.E. Daldrup-Link, Eur. Radiol. 16, 738–745 (2006)

    Article  Google Scholar 

  7. G. Klug, T. Kampf, S. Bloemer, J. Bremicker, C.H. Ziener, A. Heymer, U. Gbureck, E. Rommel, U. Nöth, W.A. Schenk, Magn. Reson. Med. 64, 1607–1615 (2010)

    Article  Google Scholar 

  8. N. Najafian, S. Shanehsazzadeh, F. Hajesmaeelzadeh, A. Lahooti, C. Gruettner, M.A. Oghabian, Appl. Magn. Reson. 46, 685–692 (2015)

    Article  Google Scholar 

  9. G.-P. Yan, L. Robinson, P. Hogg, Radiography 13, e5–e19 (2007)

    Article  Google Scholar 

  10. S. Shanehsazzadeh, A. Lahooti, M.J. Hajipour, M. Ghavami, M. Azhdarzadeh, Colloid Surf. B 136, 1107–1112 (2015)

    Article  Google Scholar 

  11. I. Coroiu, A. Darabont, D.E. Demco, Appl. Magn. Reson. 15, 531–538 (1998)

    Article  Google Scholar 

  12. R. Passier, L.W. van Laake, C.L. Mummery, Nature 453, 322–329 (2008)

    Article  ADS  Google Scholar 

  13. S. Shanehsazzadeh, M. Oghabian, B. Allen, M. Amanlou, A. Masoudi, F. Daha, J. Med. Phys. 38, 34–40 (2013)

    Article  Google Scholar 

  14. G. Gambarota, H.W.M. van Laarhoven, M. Philippens, W.J.M. Peeters, P. Rijken, A. van der Kogel, C.J.A. Punt, A. Heerschap, Appl. Magn. Reson. 38, 349–360 (2010)

    Article  Google Scholar 

  15. A. Yilmaz, H. Budak, R. Longo, Appl. Magn. Reson. 14, 51–58 (1998)

    Article  Google Scholar 

  16. M. Rohrer, H. Bauer, J. Mintorovitch, M. Requardt, H.-J. Weinmann, Invest. Radiol. 40, 715–724 (2005)

    Article  Google Scholar 

  17. M. Azhdarzadeh, F. Atyabi, A.A. Saei, B.S. Varnamkhasti, Y. Omidi, M. Fateh, M. Ghavami, S. Shanehsazzadeh, R. Dinarvand, Colloid Surf. B 143, 224–232 (2016)

    Article  Google Scholar 

  18. A. Yilmaz, M. Yurdakoc, J. Bernarding, H.-M. Vieth, J. Braun, A. Yurt, Appl. Magn. Reson. 22, 11–22 (2002)

    Article  Google Scholar 

  19. M. Somayeh, S. Saeed, A. Fatemeh, D. Rassoul, Mater. Sci. Eng. 59, 390–397 (2016)

    Article  Google Scholar 

  20. Y.-X.J. Wang, S.M. Hussain, G.P. Krestin, Eur. Radiol. 11, 2319–2331 (2001)

    Article  Google Scholar 

  21. J. Brisset, V. Desestret, S. Marcellino, E. Devillard, F. Lagrade, N. Nighoghossian, Y. Berthezene, M. Wiart, in Proceedings of the 16th Annual Meeting of the International Society of Magnetic Resonance Medicine (Toronto, Ontario, Canada, 3-9 May 2008), p. 1687

  22. J.-C. Brisset, V. Desestret, S. Marcellino, E. Devillard, F. Chauveau, F. Lagarde, S. Nataf, N. Nighoghossian, Y. Berthezene, M. Wiart, Eur. Radiol. 20, 275–285 (2010)

    Article  Google Scholar 

  23. J. Vymazal, R.A. Brooks, O. Zak, C. Mcrill, C. Shen, G.D. Chiro, Magn. Reson. Med. 27, 368–374 (1992)

    Article  Google Scholar 

  24. J.W. Bulte, J. Vymazal, R.A. Brooks, C. Pierpaoli, J.A. Frank, J. Magn. Reson. Imaging 3, 641–648 (1993)

    Article  Google Scholar 

  25. L.E. LaConte, N. Nitin, O. Zurkiya, D. Caruntu, C.J. O’Connor, X. Hu, G. Bao, J. Magn. Reson. Imaging 26, 1634–1641 (2007)

    Article  Google Scholar 

  26. Y. Park, R.D. Whitaker, R.J. Nap, J.L. Paulsen, V. Mathiyazhagan, L.H. Doerrer, Y.-Q. Song, M.D. Hürlimann, I. Szleifer, J.Y. Wong, Langmuir 28, 6246–6255 (2012)

    Article  Google Scholar 

  27. H. Amiri, L. Bordonali, A. Lascialfari, S. Wan, M.P. Monopoli, I. Lynch, S. Laurent, M. Mahmoudi, Nanoscale 5, 8656–8665 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors should express their special thanks to the reviewers for their constructive comments and to Mr. Hamed Dehghani for his kind assistance in our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariborz Faeghi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 103 kb)

Supplementary material 2 (TIFF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzadniya, A., Faeghi, F. & Shanehsazzadeh, S. Quantitative Effect of Magnetic Field Strength on PEGylated Superparamagnetic Iron Oxide Nanoparticles. Appl Magn Reson 48, 597–607 (2017). https://doi.org/10.1007/s00723-017-0880-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0880-2

Keywords

Navigation