Skip to main content
Log in

Mimicking the Electromagnetic Distribution in the Human Brain: A Multi-frequency MRI Head Phantom

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The purpose of this study was to fabricate and test a multi-frequency human brain-mimicking phantom for magnetic resonance imaging (MRI) assessment purposes. An anatomically realistic human head phantom was elaborated, for different Larmor frequencies, which allows rapid quantification of \({\text{B}}_{1}^{ + }\). It is a simple alternative solution in time and cost as compared to numerical simulations to validate simulation when the coil geometry and components cannot be known as a unique solution. The permittivity \(\varepsilon^{{\prime }}\) and conductivity \(\sigma\) of sucrose/salt/agar aqueous solutions of varying concentrations were determined; a solution with these components and having the adequate concentration to obtain the brain’s dielectric properties at 3, 7 and 11.7T was manufactured. An anthropomorphic polymeric skull was filled with this mixture. To check the behavior of this phantom in a MRI configuration, both numerical and experimental validations were done: a \({\text{B}}_{1}^{ + }\) field distribution inside the phantom was calculated with CST Microwave Studio inside a birdcage coil at 7T; the same mapping was assessed in a 7T MRI. The feasibility of a multi-MRI static field phantom was demonstrated. A solution composed by 54.7 wt% of sucrose, 3.1 wt% of salt and 3.1 wt% of agar was fabricated with good permittivity and conductivity matching for 3, 7 and 11.7T. The results were confirmed by both numerical simulation and MRI acquisition. This work has shown the possibility of manufacturing a head phantom with accessible and cheap components for MRI evaluation, having an adequate \({\text{B}}_{1}^{ + }\) field distribution and the dielectric properties of the human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.P. Slobozhanyuk, A.N. Poddubny, A.J.E. Raaijmaker, C.A.T. van den Berg, A.V. Kozachenko, I.A. Dubrovina, I.V. Melchakova, Y.S. Kivshar, P.A. Belov, Adv. Mater. 28, 1832–1838 (2016)

    Article  Google Scholar 

  2. I. Tkac, P. Andersen, G. Adriany, H. Merkle, K. Ugurbil, R. Gruetter, Magn. Reson. Med. 46, 451–456 (2001)

    Article  Google Scholar 

  3. G.J. Metzger, C. Snyder, C. Akgun, T. Vaughan, K. Ugurbil, P.F. van de Moortele, Magn. Reson. Med. 59, 396–409 (2008)

    Article  Google Scholar 

  4. X. Zhang, P.F. van de Moortele, S. Schmitter, B. He, Magn. Reson. Med. 69, 1285–1296 (2013)

    Article  Google Scholar 

  5. N. Graedel, J. Polimeni, B. Guerin, B. Gogoski, L.L. Wald, Magn. Reson. Med. 73, 442–450 (2015)

    Article  Google Scholar 

  6. J. Nadobny, R. Klopfleisch, G. Brinker, G. Stoltenburg-Didinger, Int. J. Hyperth. 31, 409–420 (2015)

    Article  Google Scholar 

  7. P.F. van de Moortele, C. Akgun, G. Adriany, S. Moeller, J. Ritter, C.M. Collins, M.B. Smith, J.T. Vaughan, K. Uğurbil, Magn. Reson. Med. 54, 1503–1518 (2005)

    Article  Google Scholar 

  8. C. Jouvaud, R. Abdeddaim, B. Larrat, J. de Rosny, Appl. Phys. Lett. 108, 023503 (2016)

    Article  ADS  Google Scholar 

  9. U. Katscher, P. Bornert, NMR Biomed. 19, 393–400 (2006)

    Article  Google Scholar 

  10. P. De Heer, W.M. Brink, B.J. Kooij, A.G. Webb, Magn. Reson. Med. 68, 1317–1324 (2012)

    Article  Google Scholar 

  11. Q.X. Yang, J. Wang, X. Zhang, C.M. Collins, M.B. Smith, H. Liu, X.H. Zhu, J.T. Vaughan, K. Ugurbil, W. Chen, Magn. Reson. Med. 47, 982–989 (2002)

    Article  Google Scholar 

  12. A. van Lier, T. Raaijmakers, J. Voigt, J.J.W. Lagendijk, P.R. Luijten, U. Katscher, C.A.T. van den Berg, Magn. Reson. Med. 71, 354–363 (2014)

    Article  Google Scholar 

  13. J. Liu, X. Zhang, P.F. van de Moortele, S. Schmitter, B. He, Phys. Med. Biol. 58, 4395–4408 (2013)

    Article  Google Scholar 

  14. W.M. Teeuwisse, W.M. Brink, K.N. Haines, A.G. Webb, Magn. Reson. Med. 67, 912–918 (2012)

    Article  Google Scholar 

  15. A. Kangarlu, F. Shellock, D. Chakeres, J. Magn. Reson. Imaging 17, 220–226 (2008)

    Article  Google Scholar 

  16. Q. Duan, J.H. Duyn, N. Gudino, J.A. de Zwart, P. van Gelderen, Med. Phys. 41, 102303 (2014)

    Article  Google Scholar 

  17. M.Y. Kanda, M. Ballen, S. Salins, C.K. Chou, Q. Balzano, IEEE Trans. Microw. Theory Tech. 52, 2046–2056 (2004)

    Article  ADS  Google Scholar 

  18. G. Hartsgrove, A. Kraszewski, A. Surowiec, Bioelectromagnetics 29-36 (1987)

  19. K.M Chew, R. Sudirman, N. Seman, C.Y. Yong, International Conference on Biomedical Engineering and Biotechnology iCBEB, Macao (2012), pp. 817

  20. P.R. Stauffer, F. Rossetto, M. Prakash, D.G. Neuman, T. Lee, Int. J. Hyperth. 19, 89–101 (2009)

    Article  Google Scholar 

  21. T. Sunaga, H. Ikehira, S. Furukawa, M. Tamura, E. Yoshitome, T. Obata, H. Shinkai, S. Tanada, H. Murata, Y. Sasaki, Bioelectromagnetics 24, 214–217 (2003)

    Article  Google Scholar 

  22. S.M. Park, J.A. Nyenhuis, C.D. Smith, E.J. Lim, K.S. Foster, K.B. Baker, A.R.R. Hrdlicka, P. Ruggieri, A. Sharan, F.G. Shellock, P.H. Stypulkowski, J. Tkach, IEEE Trans. Magn. 39, 3367–3371 (2003)

    Article  ADS  Google Scholar 

  23. C. Gabriel, King's Coll London, Dept Physics (1996)

  24. T. Karacolak, E. Moreland, E. Topsakai, Microw. Opt. Technol. Lett. 55, 1160–1164 (2013)

    Article  Google Scholar 

  25. Q. Peyman, C. Gabriel, E.H. Grant, Bioelectromagnetics 28, 264–274 (2007)

    Article  Google Scholar 

  26. P.M. Buff, M. Steer, G. Lazzi, IEEE Trans. Geosci. Remote Sens. 44, 351–355 (2006)

    Article  ADS  Google Scholar 

  27. M. Mathlouthi, Sucrose—Properties and Applications (Blackie Academic & Professional, Glasgow, 1995), pp. 101–125

    Google Scholar 

  28. D. Ba, P. Sabouroux, Microw. Opt. Technol. Lett. 52, 2643–2648 (2010)

    Article  Google Scholar 

  29. A.M. Nicolson, G.F. Ross, IEEE Trans. Instrum. Meas. 19, 377–382 (1970)

    Article  Google Scholar 

  30. W.B. Weir, Proc. IEEE 62, 33–36 (1974)

    Article  Google Scholar 

  31. E. Georget, R. Abdeddaim, P. Sabouroux, C. R. Phys. 15, 448–457 (2014)

    Article  ADS  Google Scholar 

  32. V. Grigoriev, G. Demesy, J. Wenger, N. Bonod, Phys. Rev. B 89, 245102 (2014)

    Article  ADS  Google Scholar 

  33. D.M. Pozar, Microwave Engineering, 4th edn. (Hamilton Printing, Hoboken, 2012), p. 287

    Google Scholar 

  34. V.L. Yarnykh, Magn. Reson. Med. 57, 192–200 (2007)

    Article  Google Scholar 

  35. H.L. Cheng, G.A. Wright, Magn. Reson. Med. 55, 566–574 (2006)

    Article  Google Scholar 

  36. W.J. Ellison, K. Lamkaouchi, J.M. Moreau, J. Mol. Liq. 68, 171–279 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Association Instituts Carnot, France Life Imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana L. Neves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neves, A.L., Leroi, L., Cochinaire, N. et al. Mimicking the Electromagnetic Distribution in the Human Brain: A Multi-frequency MRI Head Phantom. Appl Magn Reson 48, 213–226 (2017). https://doi.org/10.1007/s00723-017-0862-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0862-4

Keywords

Navigation