Skip to main content

Advertisement

Log in

Structural investigations, high temperature behavior and phase transition of Na6Ca4(SO4)6F2

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Polycrystalline material of a sulfate apatite with chemical composition Na6Ca4(SO4)6F2 or (Na2Ca4)Na4(SO4)6F2 has been synthesized by solid state reactions. Basic crystallographic data are as follows: hexagonal symmetry, a = 9.3976(1) Å, c = 6.8956(1) Å, V = 527.39(1) Å3, Z = 1, space group P63/m. For structural investigations the Rietveld method was employed. Thermal expansion has been studied between 25 and 600 °C. High temperature (HT) powder diffraction data as well as thermal analysis indicate that the apatite-type compound undergoes a reconstructive phase transition in the range between 610 and 630 °C. Single-crystals of the HT-polymorph were directly grown from the melt. Structural investigations based on single-crystal diffraction data of the quenched crystals performed at −100 °C showed orthorhombic symmetry (space group Pna21) with a = 12.7560(8) Å, b = 8.6930(4) Å, c = 9.8980(5) Å, V = 1097.57(10) Å3 and Z = 2. Unit cell parameters for a quenched polycrystalline sample of the HT-form obtained at ambient conditions from a LeBail-fit are as follows: a = 12.7875(1) Å, b = 8.7255(1) Å, c = 9.9261(1) Å, V = 1107.53(2) Å3. The lattice parameters of both modifications are related by the following approximate relationships: a HT ≈ 2c RT, b HT ≈ -(½a RT + b RT), c HT ≈ a RT. The HT-modification is isotypic with the corresponding potassium compound K6Ca4(SO4)6F2. The pronounced disorder of the sulphate group even at low temperatures has been studied by maximum entropy calculations. Despite the first-order character of the transformation clusters of sulfate groups surrounding the fluorine anions can be identified in both polymorphs. Each of the three next neighbor SO4-tetrahedra within a cluster is in turn surrounded by 8–9 M-cations (M: Na,Ca) defining cage-like units. However, in the apatite structure the corresponding three tricapped trigonal prisms are symmetry equivalent. Furthermore, the central fluorine atom of each cluster is coordinated by three next M-neighbors (FM3-triangles), whereas in the HT-polymorph a four-fold coordination is observed (FM4-tetrahedra).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla MC, Polidori G, Camalli M (1994) SIR92 - a program for automatic solution of crystal structures by direct methods. J Appl Crystallogr 27:435

    Google Scholar 

  • Apella MC, Baran EJ (1979) Röntgenographische und IR-spektroskopische Untersuchungen der Substitution von Phosphat- und Sulfat-Ionen im Fluorapatitgitter. Z Naturforsch 34b:1124–1127

    Google Scholar 

  • Apella MC, Baran EJ (1981) Zur Kristallchemie der gemischten Phosphat/Sulfat Fluorapatite. Z Naturforsch 36b:644–645

    Google Scholar 

  • Bergerhoff G, Berndt M, Brandenburg K, Degen T (1999) Concerning inorganic crystal structure types. Acta Crystallogr B55:147–156

    Article  Google Scholar 

  • Cavarretta G, Mottana A, Tecce F (1981) Cesanite, Ca2Na3[(OH)(SO4)3], a sulphate isotypic to apatite, from the Cesano geothermal field (Latium, Italy). Min Mag 44:269–273

    Article  Google Scholar 

  • De Vries RY, Briels WJ, Feil D (1994) Novel treatment of the experimental data in the application of the maximum-entropy method to the determination of the electron-density distribution from X-ray experiments. Acta Crystallogr A50:383–391

    Article  Google Scholar 

  • Deganello S, Artioli G (1982) Thermal expansion of cesanite between 22–390 °C. N Jb Mineral Mh 1982:565–568

    Google Scholar 

  • Demartin F, Gramaccioli CM, Campostrini I, Pilati T (2010) Aiolosite, Na2(Na2Bi)(SO4)3Cl, a new sulfate isotypic to apatite from La Fossa Crater, Vulcano, Aeolian Islands, Italy. Am Mineral 95:382–385

    Article  Google Scholar 

  • Dowty E (2011) ATOMS, Version 6.4, Shape Software. Kingsport, USA

  • Fayos J, Watkin DJ, Pérez-Méndez M (1987) Crystal structure of the apatite-like compound K3Ca2(SO4)3F. Am Mineral 72:209–212

    Google Scholar 

  • Finger LW, Cox DE, Jephcoat AP (1994) A correction for powder diffraction peak asymmetry due to axial divergence. J Appl Crystallogr 27:892–900

    Article  Google Scholar 

  • Fletcher L (1889) On the crystals of percylite, caracolite and an oxychloride of lead (daviesite), from Mina Beatriz, Sierra Gorda, Atacama, South America. Min Mag 8:171–180

    Article  Google Scholar 

  • Klement R (1939) Natrium-Calcium-Sulfatapatit Na6Ca4(SO4)6F2. Naturwissenschaften 27:568

    Article  Google Scholar 

  • McConnell D (1937) The substitution of SiO4- and SO4-groups for PO4-groups in the apatite structure; ellastadite, the end-member. Am Mineral 22:977–986

    Google Scholar 

  • Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  Google Scholar 

  • Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan J, White TJ (2010) Nomenclature of the apatite supergroup minerals. Eur J Mineral 22:163–179

    Article  Google Scholar 

  • Perret R, Bouillet AM (1975) Les apatites-sulfates Na3Cd2(SO4)3Cl and Na3Pd2(SO4)3Cl. Bull Soc Fr Mineral Cristallogr 8:254–256

    Google Scholar 

  • Petřiček V, Dušek M, Palatinus L (2006) Jana2006. The crystallographic computing system. Institute of Physics, Praha

    Google Scholar 

  • Piotrowski A, Kahlenberg V, Fischer RX, Lee Y, Parise JB (2002a) The crystal structures of cesanite and its synthetic analogue – a comparison. Am Mineral 87:715–720

    Google Scholar 

  • Piotrowski A, Kahlenberg V, Fischer RX (2002b) The solid solution series of the sulfate apatite system Na6.45Ca3.55(SO4)6(FxCl1-x)1.55. J Solid State Chem 163:398–405

    Article  Google Scholar 

  • Piotrowski A, Kahlenberg V, Fischer RX (2004) Mixed phosphate-sulfate fluor apatites, possible materials in dental fillers. Eur J Mineral 16:279–284

    Article  Google Scholar 

  • Prince E (ed) (2004) International Tables for Crystallography, Vol. C: Mathematical, physical and chemical tables. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Rodriguez-Carvajal J (2005) FullProf.2k, version 3.3. Laboratoire Leon Brillouin (CEA-CNRS), France

    Google Scholar 

  • Roisnel T (2013) WinPlotr, http://www.cdifx.univ-rennes1.fr/winplotr/winplotr.htm. Accessed 08 August 2013.

  • Schneider W (1967) Caracolit, das Na3Pb2(SO4)3Cl mit Apatitstruktur. N Jb Mineral Mh:58–64

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122

    Article  Google Scholar 

  • Shiga Y, Urashima Y (1987) A sodian sulfatian fluorapatite from an epithermal calcite-quartz vein of the Kushikino mine, Kagoshima Prefecture, Japan. Can Mineral 25:673–681

    Google Scholar 

  • Tasci ES, De la Flor G, Orobengoa D, Capillas C, Perez-Mato JM, Aroyo MI (2012) An introduction to the tools hosted in the Bilbao Crystallographic Server. EJP Web Conf 22:00009

    Article  Google Scholar 

  • Thakre PS, Gedam SC, Dhoble SJ, Atram RG (2011) Luminescence investigations on sulfate apatite Na6(SO4)2FCl: RE (RE = Dy, Ce or Eu) phosphors. J Lumin 131:2683–2689

    Article  Google Scholar 

  • Tõnsuaadu K, Peld M, Quarton M, Bender V, Veiderma M (2002) Studies on SO4 2- ion incorporation into apatite structure. Phosphorus Sulfur 177:1873–1876

    Article  Google Scholar 

  • Triviño-Vázquez F (1985) A new compound: K3Ca2(SO4)3F, identified in coatings of heat recovery cyclones. Cem Concr Res 15:581–584

    Article  Google Scholar 

  • Van Smaalen S, Palatinus L, Schneider M (2003) The maximum entropy method in superspace. Acta Crystallogr A59:459–569

    Article  Google Scholar 

  • Websky M (1886) Über Caracolit und Percylit. Sitzber K Preuss Aka 48:1045–1050

    Google Scholar 

  • Werner PE, Eriksson L, Westdahl M (1985) TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries. J Appl Crystallogr 18:367–370

    Article  Google Scholar 

  • White TJ, Dong ZL (2003) Structural derivation and crystal chemistry of apatites. Acta Crystallogr B59:1–16

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the helpful comments and suggestions of Lutz Nasdala (associate editor), Christian L. Lengauer as well as two other anonymous reviewers which improved the quality of this paper. Furthermore, we would like to thank Mrs. Daniela Schmidmair (University of Innsbruck) for troubleshooting graphics software errors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kahlenberg.

Additional information

Editorial handling: L. Nasdala

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botta, C., Kahlenberg, V., Hejny, C. et al. Structural investigations, high temperature behavior and phase transition of Na6Ca4(SO4)6F2 . Miner Petrol 108, 487–501 (2014). https://doi.org/10.1007/s00710-013-0319-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-013-0319-x

Keywords

Navigation