Skip to main content
Log in

Exploitation of microbes for enhancing bacoside content and reduction of Meloidogyne incognita infestation in Bacopa monnieri L

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Despite the vast exploration of rhizospheric microbial wealth for crop yield enhancement, knowledge about the efficacy of microbial agents as biocontrol weapons against root-knot disease is scarce, especially in medicinal plants, viz., Bacopa monnieri. In the present investigation, rhizospheric microbes, viz., Bacillus megaterium, Glomus intraradices, Trichoderma harzianum ThU, and their combinations were evaluated for the management of Meloidogyne incognita (Kofoid and White) Chitwood and bacoside content enhancement in B. monnieri var CIM-Jagriti. A novel validated method Fourier transform near infrared was used for rapid estimation of total bacoside content. A significant reduction (2.75-fold) in root-knot indices was observed in the combined treatment of B. megaterium and T. harzianum ThU in comparison to untreated control plants. The same treatment also showed significant enhancement (1.40-fold) in total bacoside contents (plant active molecule) content using Fourier transform near-infrared (FT-NIR) method that analyses samples rapidly in an hour without solvent usage and provides ample scope for natural product studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ajayakumar PV, Chanda D, Pal A, Singh MP, Samad A (2012) FT-NIR spectroscopy for rapid and simple determination of nimesulide in rabbit plasma for pharmacokinetic analysis. J Pharm Biomed Anal 58:157–162

    Article  CAS  PubMed  Google Scholar 

  • Alessandrini L, Romani S, Pinnavaia G, Rosa MD (2008) Near infrared spectroscopy: an analytical tool to predict coffee roasting degree. Anal Chim Acta 625:95–102

    Article  CAS  PubMed  Google Scholar 

  • Anand T, Naika M, Swamy MSL, Khanum F (2011) Antioxidant and DNA damage preventive properties of Bacopa monniera (L) Wettst. Free Rad Antioxid 1:84–90

    Article  CAS  Google Scholar 

  • Bammidi SR, Volluri SS, Chippada SC, Avanigadda S, Vangalapati M (2011) A review on pharmacological studies of Bacopa monniera. J Chem Biol Phys Sci 1(2):250–259

    Google Scholar 

  • Barriuso J, Ramos Solano B, Santamaría C, Daza A, Gutierrez Manero FJ (2008) Effect of inoculation with putative plant growth‐promoting rhizobacteria isolated from Pinus spp. on Pinus pinea growth, mycorrhization and rhizosphere microbial communities. J Appl Microbiol 105:1298–1309

    Article  CAS  PubMed  Google Scholar 

  • Cayrol JC, Djian C, Pijarowski L (1989) Study of the nematicidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Revue de Nématol 12:331–336

  • Hashem M, Yasser AM, Omran M, Nashwa M, Sallam A (2008) Efficacy of yeasts in the management of root-knot nematode Meloidogyne incognita, in flame seedless grapevines and the consequent effect on the productivity of the vines. Biocontrol Sci Tech 18(4):357–375

    Article  Google Scholar 

  • Imada A, Igarasi S, Nakahama K, Isono M (1973) Asparaginase and glutaminase activities of micro-organisms. J Gen Microbiol 76:85–99

    Article  CAS  PubMed  Google Scholar 

  • Jackson NE, Miller RH, Franklin RE (1973) The influence of vesicular-arbuscular mycorrhizae on uptake of 90Sr from soil by soybeans. Soil Biol Biochem 5:205–212

    Article  CAS  Google Scholar 

  • Kiewnick S, Sikora RA (2006) Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biol Control 38:179–187

    Article  Google Scholar 

  • Kiran U, Patra DD (2003) Medicinal and aromatic plant materials as nitrification inhibitors for augmenting yield and nitrogen uptake of Japanese mint (Mentha arvensis L. Var. Piperascens). Bioresour Technol 86:267–276

    Article  PubMed  Google Scholar 

  • Kloepper JW (2004) Induced systemic resistance and promotion of plant growth by Bacillus species. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Krusberg LR, Nielsen LW (1958) Pathogenesis of root-knot nematodes to Porto Rico variety of sweet potato. Phytopathology 48:30–39

    Google Scholar 

  • Li YY, Bao YL, Song ZB, Sun LG, Wu P, Zhang Y, Fan C, Huang YX, Wu Y, Yu CL, Sun Y, Zheng LH, Wang GN, Li YX (2012) The threonine protease activity of testes-specific protease 50 (TSP50) is essential for its function in cell proliferation. PLoS One. doi:10.1371/journal.pone.0035030

    Google Scholar 

  • Niknam GR, Dhawan SC (2001) Effect of seed bacterization, soil drench and bare root-dip application methods of Pseudomonas fluorescens isolate Pf1 on the suppression of Rotylenchulus reniformis infecting tomato. In National Congress on Centenary of Nematology in India–Appraisal & Future Plans IARI New Delhi

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9(4):1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Pandey R, Kalra A, Singh SC, Gupta ML (2003) Bacopa monnieri damaged by root-knot nematode and remedial measures. J Tropical Medicinal Plant 4:123–127

  • Pandey R, Mishra AK, Tiwari S, Kalra A (2011) Nematode inhibiting organic materials and a strain of Trichoderma harzianum effectively manages Meloidogyne incognita in Withania somnifera fields. Biocontrol Sci Tech 21(12):1495–1499

    Article  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Saikia SK, Tiwari S, Pandey R (2013) Rhizospheric biological weapons for growth enhancement and Meloidogyne incognita management in Withania somnifera cv. Poshita. Biol Control 65:225–235

    Article  Google Scholar 

  • Singh AK, Hamel C, DePauw RM, Knox RE (2012) Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada. Can J Microbiol 58:293–302

    Article  CAS  PubMed  Google Scholar 

  • Southey JF (1986) Laboratory methods for work with plant and soil nematodes. Ministry of Agriculture, Fisheries and Food, Reference Book, London

    Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moenne-Loccoz Y, Muller D, Legendre L, Florence WD, Claire P (2013) Plant growth- promoting rhizobacteria and root system functioning. Front Plant Sci 4:356. doi:10.3389/fpls.2013.00356

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director of CSIR-CIMAP, Lucknow, India for his constant encouragement and providing necessary facilities.

Conflict of interest

The authors declare that there exists no potential conflict of interest among them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Pandey.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Tiwari, S., Saikia, S.K. et al. Exploitation of microbes for enhancing bacoside content and reduction of Meloidogyne incognita infestation in Bacopa monnieri L . Protoplasma 252, 53–61 (2015). https://doi.org/10.1007/s00709-014-0657-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0657-5

Keywords

Navigation