Skip to main content
Log in

Potential method in the linear theory of viscoelastic porous mixtures

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the present paper, the linear theory of viscoelasticity for binary porous mixtures is considered. The fundamental solution of the system of steady vibration equations is constructed, and its basic properties are established. Green’s identities of this theory are obtained. The uniqueness theorems for classical solutions of the internal and external basic boundary value problems (BVPs) of steady vibrations are proved. The surface and volume potentials are introduced, and their basic properties are established. The determinants of symbolic matrices of the singular integral operators are calculated explicitly, and the BVPs are reduced to the always solvable singular integral equations for which Fredholm’s theorems are valid. Finally, the existence theorems for classical solutions of the internal and external BVPs of steady vibrations are proved by means of the potential method and the theory of singular integral equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aouadi, M., Ciarletta, M., Tibullo, V.: Well-posedness and exponential stability in binary mixtures theory for thermoviscoelastic diffusion materials. J. Therm. Stress. 41, 1414–1431 (2018)

    Article  Google Scholar 

  2. Atkin, R.J., Craine, R.E.: Continuum theories of mixtures: basic theory and historical development. Q. J. Mech. Appl. Math. 29, 209–245 (1976)

    Article  MathSciNet  Google Scholar 

  3. Atkin, R.J., Craine, R.E.: Continuum theories of mixtures: applications. J. Inst. Math. Appl. 17, 153–207 (1976)

    Article  MathSciNet  Google Scholar 

  4. Bedford, A., Drumheller, D.S.: Theory of immiscible and structured mixtures. Int. J. Eng. Sci. 21, 863–960 (1983)

    Article  Google Scholar 

  5. Bedford, A., Stern, M.: A multi-continuum theory for composite elastic materials. Acta Mech. 14, 85–102 (1972)

    Article  Google Scholar 

  6. Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics III. Academic Press, New York (1976)

    Google Scholar 

  7. Bowen, R.M., Wiese, J.C.: Diffusion in mixtures of elastic materials. Int. J. Eng. Sci. 7, 689–722 (1969)

    Article  Google Scholar 

  8. Brinson, H.F., Brinson, L.C.: Polymer Engineering Science and Viscoelasticity. Springer, New York (2015)

    Book  Google Scholar 

  9. Chiriţǎ, S., Galeş, C.: A mixture theory for microstretch thermoviscoelastic solids. J. Therm. Stress. 31, 1099–1124 (2008)

    Article  Google Scholar 

  10. De Cicco, S., Svanadze, M.: Fundamental solution in the theory of viscoelastic mixtures. J. Mech. Mater. Struct. 4, 139–156 (2009)

    Article  Google Scholar 

  11. Fernández, J.R., Magaña, A., Masid, M., Quintanilla, R.: On the viscoelastic mixtures of solids. Appl. Math. Optim. 79, 309–326 (2019)

    Article  MathSciNet  Google Scholar 

  12. Galeş, C.: On spatial behavior in the theory of viscoelastic mixtures. J. Therm. Stress. 30, 1–24 (2007)

    Article  MathSciNet  Google Scholar 

  13. Galeş, C.: Some results in the dynamics of viscoelastic mixtures. Math. Mech. Solids 13, 124–147 (2008)

    Article  MathSciNet  Google Scholar 

  14. Galeş, C., Ghiba, I.-D.: On uniqueness and continuous dependence of solutions in viscoelastic mixtures. Meccanica 45, 901–909 (2010)

    Article  MathSciNet  Google Scholar 

  15. Green, A.E., Naghdi, P.M.: A dynamic theory of interacting continua. Int. J. Eng. Sci. 3, 231–241 (1965)

    Article  Google Scholar 

  16. Green, A.E., Steel, T.R.: Constitutive equations for interacting continua. Int. J. Eng. Sci. 4, 483–500 (1966)

    Article  Google Scholar 

  17. Ieşan, D.: On the theory of viscoelastic mixtures. J. Therm. Stress. 27, 1125–1148 (2004)

    Article  MathSciNet  Google Scholar 

  18. Ieşan, D.: Continuous dependence in a nonlinear theory of viscoelastic porous mixtures. Int. J. Eng. Sci. 44, 1127–1145 (2006)

    Article  MathSciNet  Google Scholar 

  19. Ieşan, D.: A theory of thermoviscoelastic composites modelled as interacting Cosserat continua. J. Therm. Stress. 30, 1269–1289 (2007)

    Article  Google Scholar 

  20. Ieşan, D., Nappa, L.: On the theory of viscoelastic mixtures and stability. Math. Mech. Solids 13, 55–80 (2008)

    Article  MathSciNet  Google Scholar 

  21. Ieşan, D., Quintanilla, R.: On a theory of interacting continua with memory. J. Therm. Stress. 25, 1161–1178 (2002)

    Article  MathSciNet  Google Scholar 

  22. Ieşan, D., Scalia, A.: On a theory of thermoviscoelastic mixtures. J. Therm. Stress. 34, 228–243 (2011)

    Article  Google Scholar 

  23. Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland Publishing Company, Amsterdam (1979)

    Google Scholar 

  24. Lakes, R.: Viscoelastic Materials. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  25. Marinov, P.: Toward a thermoviscoelastic theory of two component materials. Int. J. Eng. Sci. 16, 533–555 (1978)

    Article  Google Scholar 

  26. McCarthy, M.F., Tiersten, H.F.: A theory of viscoelastic composites modeled as interpenetrating solid continua with memory. Arch. Rat. Mech. Anal. 81, 21–51 (1983)

    Article  MathSciNet  Google Scholar 

  27. Mikhlin, S.G.: Multidimensional Singular Integrals and Integral Equations. Pergamon Press, Oxford (1965)

    MATH  Google Scholar 

  28. Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  29. Müller, I.: A thermodynamics theory of mixtures of fluids. Arch. Rational Mech. Anal. 28, 1–39 (1968)

    Article  MathSciNet  Google Scholar 

  30. Passarella, F., Tibullo, V., Zampoli, V.: On microstretch thermoviscoelastic composite materials. Eur. J. Mech. A/Solids 37, 294–303 (2013)

    Article  MathSciNet  Google Scholar 

  31. Quintanilla, R.: Existence and exponential decay in the linear theory of viscoelastic mixtures. Eur. J. Mech. A/Solids 24, 311–324 (2005)

    Article  MathSciNet  Google Scholar 

  32. Rajagopal, K.R., Tao, L.: Mechanics of Mixtures. World Scientific, Singapore (1995)

    Book  Google Scholar 

  33. Rushchitsky, J.J.: Interaction of waves in solid mixtures. Appl. Mech. Rev. 52, 35–74 (1999)

    Article  Google Scholar 

  34. Steel, T.R.: Applications of a theory of interacting continua. Q. J. Mech. Appl. Math. 20, 57–72 (1967)

    Article  Google Scholar 

  35. Svanadze, M., Iovane, G.: Fundamental solution in the linear theory of thermoviscoelastic mixtures. Eur. J. Appl. Math. 18, 323–335 (2007)

    Article  MathSciNet  Google Scholar 

  36. Svanadze, M.M.: Plane waves and uniqueness theorems in the theory of viscoelastic mixtures. Acta Mech. 228, 1835–1849 (2017)

    Article  MathSciNet  Google Scholar 

  37. Svanadze, M.M.: Potential method in the theory of thermoviscoelastic mixtures. J. Therm. Stress. 41, 1022–1041 (2018)

    Article  Google Scholar 

  38. Tiersten, H.F., Jahanmir, M.: A theory of composites modeled as interpenetrating solid continua. Arch. Rational Mech. Anal. 65, 153–192 (1977)

    Article  MathSciNet  Google Scholar 

  39. Truesdell, C., Toupin, R.: The classical field theories. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/3. Springer, Berlin (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maia M. Svanadze.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Shota Rustaveli National Science Foundation (SRNSF) [Project \(\#\) YS-18-610].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svanadze, M.M. Potential method in the linear theory of viscoelastic porous mixtures. Acta Mech 231, 1711–1730 (2020). https://doi.org/10.1007/s00707-020-02627-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02627-5

Mathematics Subject Classification

Navigation