Skip to main content
Log in

Effect of rotational restraints on the stability of curved composite panels under shear loading

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present work focuses on the effect of rotational restraints on the shear buckling of symmetrically laminated curved composite panels. The Sanders–Koiter shell theory and a first-order shear deformation scheme were used for the mathematical representation of the deformation kinematics of cylindrical shells. The eigenvalue buckling equations were obtained using the principle of minimum total potential energy and by employing the Ritz method. The solution for the deformed shape was approximated as a series of trigonometric functions compatible with the essential boundary conditions of the problem. The effect of the rotational and torsional springs was incorporated by adding their corresponding potential energy to the total potential energy of the panel-loading system. Using the developed formulation, the effect of the influential parameters such as aspect ratio, panel curvature and restraint stiffness on the buckling strength of a specific class of laminates was studied extensively. To present the results in a more insightful manner, non-dimensional parameters were used in parametric studies. To normalize the effect of torsional elements, a new non-dimensional parameter was introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Reddy, J.N., Khdeir, A.: Buckling and vibration of laminated composite plates using various plate theories. AIAA J. 27, 1808–1817 (1989). https://doi.org/10.2514/3.10338

    Article  MathSciNet  MATH  Google Scholar 

  2. Grover, N., Maiti, D.K., Singh, B.N.: A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates. Compos. Struct. 95, 667–675 (2013). https://doi.org/10.1016/j.compstruct.2012.08.012

    Article  Google Scholar 

  3. Peng, L.X., Liew, K.M., Kitipornchai, S.: Buckling and free vibration analyses of stiffened plates using the FSDT mesh-free method. J. Sound Vib. 289, 421–449 (2006). https://doi.org/10.1016/j.jsv.2005.02.023

    Article  Google Scholar 

  4. Mantari, J.L., Canales, F.G.: Free vibration and buckling of laminated beams via hybrid Ritz solution for various penalized boundary conditions. Compos. Struct. 152, 306–315 (2016). https://doi.org/10.1016/j.compstruct.2016.05.037

    Article  Google Scholar 

  5. Upadhyay, A.K., Shukla, K.K.: Post-buckling analysis of skew plates subjected to combined in-plane loadings. Acta Mech. 225, 2959–2968 (2014). https://doi.org/10.1007/s00707-014-1205-2

    Article  MathSciNet  MATH  Google Scholar 

  6. Librescu, L., Khdeir, A.A., Frederick, D.: A shear deformable theory of laminated composite shallow shell-type panels and their response analysis I: free vibration and buckling. Acta Mech. 76, 1–33 (1989). https://doi.org/10.1007/BF01175794

    Article  MathSciNet  MATH  Google Scholar 

  7. Nosier, A., Reddy, J.N.: On vibration and buckling of symmetric laminated plates according to shear deformation theories—Part I. Acta Mech. 94, 123–144 (1992). https://doi.org/10.1007/BF01176647

    Article  MathSciNet  MATH  Google Scholar 

  8. Simitses, G.J., Giri, J.: Buckling of rotationally restrained orthotropic plates under uniaxial compression. Compos. Mater. 11, 345–364 (1978). https://doi.org/10.1177/002199837701100308

    Article  Google Scholar 

  9. Jaberzadeh, E., Azhari, M.: Elastic and inelastic local buckling of stiffened plates subjected to non-uniform compression using the Galerkin method. Appl. Math. Model. 33, 1874–1885 (2009). https://doi.org/10.1016/j.apm.2008.03.020

    Article  MathSciNet  MATH  Google Scholar 

  10. Vescovini, R., Bisagni, C.: Single-mode solution for post-buckling analysis of composite panels with elastic restraints loaded in compression. Compos. B Eng. 43, 1258–1274 (2012). https://doi.org/10.1016/j.compositesb.2011.08.029

    Article  Google Scholar 

  11. Chen, Q., Qiao, P.: Shear buckling of rotationally-restrained composite laminated plates. Thin-Walled Struct. 94, 147–154 (2015). https://doi.org/10.1016/j.tws.2015.04.006

    Article  Google Scholar 

  12. Qiao, P., Zou, G.: Local buckling of elastically restrained fiber-reinforced plastic plates and its application to box sections. J. Eng. Mech. 128, 1324–1330 (2002). https://doi.org/10.1061/(ASCE)0733-9399(2002)128:12(1324)

    Article  Google Scholar 

  13. Qiao, P., Zou, G.: Local buckling of composite fiber-reinforced plastic wide-flange sections. J. Struct. Eng. 129, 125–129 (2003). https://doi.org/10.1061/(ASCE)0733-9445(2003)129:1(125)

    Article  Google Scholar 

  14. Mittelstedt, C.: Stability behaviour of arbitrarily laminated composite plates with free and elastically restrained unloaded edges. Int. J. Mech. Sci. 49, 819–833 (2007). https://doi.org/10.1016/j.ijmecsci.2006.11.011

    Article  Google Scholar 

  15. Stamatelos, D.G., Labeas, G.N., Tserpes, K.I.: Analytical calculation of local buckling and post-buckling behavior of isotropic and orthotropic stiffened panels. Thin-Walled Struct. 49, 422–430 (2011). https://doi.org/10.1016/j.tws.2010.11.008

    Article  Google Scholar 

  16. Qiao, P., Shan, L.: Explicit local buckling analysis and design of fiber-reinforced plastic composite structural shapes. Compos. Struct. 70, 468–483 (2005). https://doi.org/10.1016/j.compstruct.2004.09.005

    Article  Google Scholar 

  17. Shan, L., Qiao, P.: Explicit local buckling analysis of rotationally restrained composite plates under uniaxial compression. Eng. Struct. 30, 126–140 (2008). https://doi.org/10.1016/j.engstruct.2007.02.023

    Article  Google Scholar 

  18. Qiao, P., Huo, X.: Explicit local buckling analysis of rotationally-restrained orthotropic plates under uniform shear. Compos. Struct. 93, 2785–2794 (2011). https://doi.org/10.1016/j.compstruct.2011.05.026

    Article  Google Scholar 

  19. Villarreal, E., Abajo, D.: Buckling and modal analysis of rotationally restrained orthotropic plates. Prog. Aerosp. Sci. 78, 116–130 (2015). https://doi.org/10.1016/j.paerosci.2015.06.005

    Article  Google Scholar 

  20. Monterrubio, L.E.: Frequency and buckling parameters of box-type structures using the Rayleigh–Ritz method and penalty parameters. Comput. Struct. 104–105, 44–49 (2012). https://doi.org/10.1016/j.compstruc.2012.03.010

    Article  Google Scholar 

  21. Qiao, P., Davalos, J.F.: Local buckling of composite FRP shapes by discrete plate analysis. J. Struct. Eng. 127, 245–255 (2001)

    Article  Google Scholar 

  22. Bank, L.C., Yin, J.: Buckling of orthotropic plates with free and rotationally restrained unloaded edges. Thin-Walled Struct. 24, 83–96 (1996). https://doi.org/10.1016/0263-8231(95)00036-4

    Article  Google Scholar 

  23. Chai, G.B., Banks, W.M., Rhodes, J.: The instability behaviour of laminated panels with elastically rotationally restrained edges. Compos. Struct. 19, 41–66 (1991)

    Article  Google Scholar 

  24. Khalili, S.M.R., Abbaspour, P., Malekzadeh Fard, K.: Buckling of non-ideal simply supported laminated plate on Pasternak foundation. Appl. Math. Comput. 219, 6420–6430 (2013). https://doi.org/10.1016/J.AMC.2012.12.056

    Article  MathSciNet  MATH  Google Scholar 

  25. Mizusawa, T., Kajita, T.: Vibration and buckling of rectangular plates with nonuniform elastic constraints in rotation. Int. J. Solids Struct. 23, 45–55 (1987). https://doi.org/10.1016/0020-7683(87)90031-X

    Article  MATH  Google Scholar 

  26. Chen, Q., Qiao, P.: Buckling analysis of laminated plate structures with elastic edges using a novel semi-analytical finite strip method. Compos. Struct. 152, 85–95 (2016). https://doi.org/10.1016/j.compstruct.2016.05.008

    Article  Google Scholar 

  27. Housner, J.M., Stein, M.: Numerical analysis and parametric study of the buckling of composite orthotropic compression and shear panels. NASA TN D-7996 (1975)

  28. Shirkavand, A., Taheri-Behrooz, F., Omidi, M.: Orientation and size effect of a rectangle cutout on the buckling of composite cylinders. Aerosp. Sci. Technol. 87, 488–497 (2019). https://doi.org/10.1016/J.AST.2019.02.042

    Article  Google Scholar 

  29. Arnold, R., Yoo, S.: Buckling, postbuckling, and crippling of shallow curved composite plates with edge stiffeners. 26th Struct. Struct. Dyn. Mater. Conf. 23, 589–598 (1985). https://doi.org/10.2514/6.1985-769

    Article  Google Scholar 

  30. Jaunky, N., Knight, N.F.: An assessment of shell theories for buckling of circular cylindrical laminated composite panels loaded in axial compression. Int. J. Solids Struct. 36, 3799–3820 (1999). https://doi.org/10.1016/S0020-7683(98)00177-2

    Article  MATH  Google Scholar 

  31. Whitney, J.M.: Structural Analysis of Anisotropic Laminated Plates. Technomic Publishing Company Inc, Lancaster (1987)

    Google Scholar 

  32. Karrech, A., Elchalakani, M., Attar, M., Seibi, A.C.: Buckling and post-buckling analysis of geometrically nonlinear composite plates exhibiting large initial imperfections. Compos. Struct. 174, 134–141 (2017). https://doi.org/10.1016/j.compstruct.2017.04.029

    Article  Google Scholar 

  33. Aydogdu, M., Aksencer, T.: Buckling of cross-ply composite plates with linearly varying in-plane loads. Compos. Struct. 183, 221–231 (2017). https://doi.org/10.1016/j.compstruct.2017.02.085

    Article  Google Scholar 

  34. Song, M., Yang, J., Kitipornchai, S.: Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. B Eng. 134, 106–113 (2018). https://doi.org/10.1016/j.compositesb.2017.09.043

    Article  Google Scholar 

  35. Ilanko, S., Monterrubio, L.E.: The Rayleigh–Ritz Method for Structural Analysis. Wiley, New York (2014)

    Book  Google Scholar 

  36. Ganesan, R., Akhlaque-E-Rasul, S.: Compressive response of tapered composite shells. Compos. Struct. 93, 2153–2162 (2011). https://doi.org/10.1016/j.compstruct.2011.02.010

    Article  Google Scholar 

  37. Bruhn, E.F.: Analysis and Design of Flight Vehicle Structures. Jacobs Publishing Inc, Hyderabad (1973)

    Google Scholar 

  38. Nemeth, M.P.: Nondimensional parameters and equations for nonlinear and bifurcation analyses of thin anisotropic quasi-shallow shells. J. Appl. Mech. 61, 664–669 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge that this research was conducted by the support provided by NSERC and Concordia University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajamohan Ganesan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Convergence curves

Appendix A: Convergence curves

figure a

Convergence of shear buckling coefficient with number of terms (symmetrical in x&y) for a \((\pm 45/\pm 45/45)\) s laminate with an \(\alpha \) of 1

figure b

Convergence of shear buckling coefficient with number of terms (symmetrical in x&y) for a \((\pm 45/\pm 45/45)\) s laminate with an \(\alpha \) of 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabanijafroudi, N., Jazouli, S. & Ganesan, R. Effect of rotational restraints on the stability of curved composite panels under shear loading. Acta Mech 231, 1805–1820 (2020). https://doi.org/10.1007/s00707-020-02620-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02620-y

Navigation