Skip to main content
Log in

Telegraph equation: two types of harmonic waves, a discontinuity wave, and a spectral finite element

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The telegraph equation \(\tau \partial ^2 u/\partial t^2 + \partial u/ \partial t = \tau c^2 \partial ^2 u / \partial x^2\) arises in studies of waves in dissipative media with a damping coefficient \(1/\tau \), or from a Maxwell–Cattaneo type heat conduction with a relaxation time \(\tau \). To elucidate basic properties of this equation, two harmonic wave solutions are compared: (1) temporally attenuated and spatially periodic (TASP) and (2) spatially attenuated and temporally periodic (SATP). The phase velocities of both waves are equal to the energy velocities and less than the group velocities. The phase velocities of the two waves are different, and less than c, but both naturally lead to a speed c for the propagation of discontinuities. The two harmonic wave solutions are suitable for different initial-boundary value problems: TASP for those with space periodicity and SATP for those with time periodicity. The asymptotic behaviors of the harmonic wave solutions when the telegraph equation transitions into a nondissipative wave equation or into a parabolic diffusion equation are presented. Only the SATP waves survive when the equation turns parabolic. The spectral finite element method is formulated for 1d Maxwell–Cattaneo heat conduction based on the SATP wave solutions. The element thermal conductivity matrix is reduced to that for a conventional (nonspectral) finite element when the frequency tends to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldock, G.R., Bridgeman, T.: Mathematical Theory of Wave Motion. Ellis Horwood Ltd, Chichester (1981)

    MATH  Google Scholar 

  2. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  3. Ostoja-Starzewski, M.: Viscothermoelasticity with finite wave speeds: thermomechanical laws. Acta Mech. 225(4–5), 1277–1285 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ostoja-Starzewski, M., Khayat, R.: Oldroyd fluids with hyperbolic heat conduction. Mech. Res. Commun. 93, 108–113 (2018)

    Article  Google Scholar 

  5. Davidovich, M.: Electromagnetic energy density and velocity in a medium with anomalous positive dispersion. Tech. Phys. Lett. 32(11), 982–986 (2006)

    Article  Google Scholar 

  6. Mainardi, F., Tocci, D., Tampieri, F.: On energy propagation for internal waves in dissipative fluids. Il Nuovo Cimento B (1971–1996) 107(11), 1337–1342 (1992)

    Article  Google Scholar 

  7. Mainardi, F.: Energy velocity for hyperbolic dispersive waves. Wave Motion 9(3), 201–208 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Christov, C., Jordan, P.: Heat conduction paradox involving second-sound propagation in moving media. Phys. Rev. Lett. 94(15), 154301 (2005)

    Article  Google Scholar 

  9. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61(1), 41–73 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nunziato, J.W.: On heat conduction in materials with memory. Q. Appl. Math. 29(2), 187–204 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mainardi, F.: On energy velocity of viscoelastic waves. Lettere Al Nuovo Cimento (1971–1985) 6(12), 443–449 (1973)

    Article  Google Scholar 

  12. Tang, Y., Liu, Y., Zhao, D.: Wave dispersion in viscoelastic single walled carbon nanotubes based on the nonlocal strain gradient Timoshenko beam model. Phys. E 87, 301–307 (2017)

    Article  Google Scholar 

  13. Li, L., Hu, Y., Ling, L.: Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory. Phys. E 75, 118–124 (2016)

    Article  Google Scholar 

  14. Mainardi, F., Van Groesen, E.: Energy propagation in linear hyperbolic systems. Il Nuovo Cimento B (1971–1996) 104(4), 487–496 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bland, D.R.: Wave Theory and Applications. Clarendon Press, Oxford (1988)

    MATH  Google Scholar 

  16. Gerasik, V., Stastna, M.: Complex group velocity and energy transport in absorbing media. Phys. Rev. E 81(5), 056602 (2010)

    Article  Google Scholar 

  17. Beskos, D., Narayanan, G.: Dynamic response of frameworks by numerical Laplace transform. Comput. Meth. Appl. Mech. Eng. 37(3), 289–307 (1983)

    Article  MATH  Google Scholar 

  18. Doyle, J.F.: Wave Propagation in Structures. Springer, New York (1997)

    Book  MATH  Google Scholar 

  19. Ostachowicz, W., Kudela, P., Krawczuk, M., Zak, A.: Guided Waves in Structures for SHM: The Time-Domain Spectral Element Method. Wiley, Chichester (2011)

    MATH  Google Scholar 

  20. Gopalakrishnan, S., Chakraborty, A., Mahapatra, D.R.: Spectral Finite Element Method: Wave Propagation, Diagnostics and Control in Anisotropic and Inhomogeneous Structures. Springer, London (2008)

    MATH  Google Scholar 

  21. Baz, A.: Spectral finite-element modeling of the longitudinal wave propagation in rods treated with active constrained layer damping. Smart Mater. Struct. 9(3), 372–377 (2000)

    Article  Google Scholar 

  22. Shahsavari, H., Ostoja-Starzewski, M.: Spectral finite element of a helix. Mech. Res. Commun. 32(2), 147–152 (2005)

    Article  MATH  Google Scholar 

  23. Ostoja-Starzewski, M., Woods, A.: Spectral finite elements for vibrating rods and beams with random field properties. J. Sound Vib. 268(4), 779–797 (2003)

    Article  Google Scholar 

  24. Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54(3), 468–488 (1984)

    Article  MATH  Google Scholar 

  25. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover Publications, Mineola (2001)

    MATH  Google Scholar 

  26. Christov, C.: On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 36(4), 481–486 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ostoja-Starzewski, M.: A derivation of the Maxwell–Cattaneo equation from the free energy and dissipation potentials. Int. J. Eng. Sci. 47(7–8), 807–810 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bland, D.R.: The Theory of Linear Viscoelasticity. Pergamon Press, Oxford (1960)

    MATH  Google Scholar 

  29. Polyanin, A.D., Nazaikinskii, V.E.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  30. Hewitt, E., Hewitt, R.E.: The Gibbs–Wilbraham phenomenon: an episode in Fourier analysis. Arch. Hist. Exact Sci. 21(2), 129–160 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the NSF under Grants CMMI-1462749 and IIP-1362146.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ostoja-Starzewski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Ostoja-Starzewski, M. Telegraph equation: two types of harmonic waves, a discontinuity wave, and a spectral finite element. Acta Mech 230, 1725–1743 (2019). https://doi.org/10.1007/s00707-018-2356-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2356-3

Navigation