Skip to main content
Log in

Theoretical and experimental validation of nonlinear deflection and stress responses of an internally debonded layer structure using different higher-order theories

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this article, two types of higher-order kinematic theories are adopted to evaluate the nonlinear bending and the stress values of the internally damaged layered composite flat panel structure numerically including the thickness stretching effect. The structural distortion is modeled by Green–Lagrange strain kinematics including all of the nonlinear higher-order strain terms to maintain the required generality. Additionally, the internal debonding between the adjacent layers is introduced via two sub-laminate approaches by maintaining the intermittent link as a priori by the continuity condition. Subsequently, the static equilibrium equations of the debonded structure under the influence of uniform mechanical loading are obtained using a variational principle and solved iteratively in association with the isoparametric finite element steps. Further, the accuracy of the derived model is established by comparing the deflection and stress values with available published results including own experimental data (three-point bend test on artificially debonded layered composite). Finally, a suitable number of numerical examples is solved using the derived higher-order nonlinear models to reveal the operational strength and effect of the debonding (size, position, and location) on the nonlinear static deflection values of the debonded structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(X_1, X_2, X_3\) :

Three mutually perpendicular axes in Cartesian coordinate system

\(\bar{{u}},\bar{{v}},\bar{{w}}\) :

Displacement along the \(X_1, X_2, X_3\) coordinates

\(u_0, v_0, w_0\) :

Mid-plane displacement along \(X_1, X_2, \hbox { and } X_3\) direction

abh :

Length, width, and thickness of the plate structure

\(\phi _1, \phi _{2}\) :

Rotations with respect to \(X_{2}\) and \(X_{1}\)-direction, respectively

\(\psi _1, \psi _2, \theta _1 \hbox { and } \theta _2\) :

Higher-order terms of Taylor series expansion

\(E_{X_1 }, E_{X_2}, E_{X_3 }\) :

Young’s modulus in \(X_1, X_2 \hbox { and } X_3\) direction, respectively

\(G_{X_1 X_2 }, G_{X_2 X_3 }, G_{X_1 X_3 }\) :

Shear modulus

\(\upsilon _{X_1 X_2 } =\upsilon _{X_2 X_3 } =\upsilon _{X_1 X_3}\) :

Poisson’s ratios

U :

Total strain energy

W :

Work done

\({[}k_\mathrm{l} {]}\) :

Linear elemental stiffness matrix

\({[}k_{\mathrm{nl}} {]}\) :

Nonlinear elemental stiffness matrix

References

  1. Reddy, J.N., Chao, W.C.: Non-linear bending of thick rectangular laminated composite plates. Int. J. Non-Linear Mech. 16, 291–301 (1981)

    Article  MATH  Google Scholar 

  2. Putcha, N.S., Reddy, J.N.: A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates. Comput. Struct. 22, 529–538 (1986)

    Article  MATH  Google Scholar 

  3. Barbero, E.J., Reddy, J.N.: Nonlinear analysis of composite laminates using a generalized laminated plate theory. AIAA J. 28, 1987–1994 (1990)

    Article  MATH  Google Scholar 

  4. Chang, J.S., Huang, Y.P.: Geometrically nonlinear static and transiently dynamic behavior of laminated composite plates based on a higher order displacement field. Compos. Struct. 18, 327–364 (1991)

    Article  Google Scholar 

  5. Kant, T., Kommineni, J.R.: C0 finite element geometrically non-linear analysis of fibre reinforced composite and sandwich laminates based on a higher-order theory. Comput. Struct. 45, 511–520 (1992)

    Article  MATH  Google Scholar 

  6. Ganapathi, M., Polit, O., Touratier, M.: A C0 eight-node membrane-shear-bending element for geometrically non-linear (static and dynamic) analysis of laminates. Int. J. Numer. Methods Eng. 39, 3453–3474 (1996)

    Article  MATH  Google Scholar 

  7. Giinay, E., Erdem, A.U.: A new heterosis plate element for geometrically non-linear finite element analysis of laminated plates. Comput. Struct. 65, 819–828 (1997)

    Article  MATH  Google Scholar 

  8. Tanriöver, H., Şenocak, E.: Large deflection analysis of unsymmetrically laminated composite plates. Analytical-numerical type approach. Int. J. Non-Linear. Mech. 39, 1385–1392 (2004). https://doi.org/10.1016/j.ijnonlinmec.2004.01.001

    Article  MATH  Google Scholar 

  9. Zhang, Y.X., Kim, K.S.: A simple displacement-based 3-node triangular element for linear and geometrically nonlinear analysis of laminated composite plates. Comput. Methods Appl. Mech. Eng. 194, 4607–4632 (2005)

    Article  MATH  Google Scholar 

  10. Zhang, Y.X., Yang, C.H.: A family of simple and robust finite elements for linear and geometrically nonlinear analysis of laminated composite plates. Compos. Struct. 75, 545–552 (2006)

    Article  Google Scholar 

  11. Zhang, Y.X., Kim, K.S.: Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate elements. Compos. Struct. 72, 301–310 (2006)

    Article  Google Scholar 

  12. Tounsi, A.: Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate. Int. J. Solids Struct. 43(43), 4154–4174 (2006). https://doi.org/10.1016/j.ijsolstr.2005.03.074

    MATH  Google Scholar 

  13. Panigrahi, S.K., Pradhan, B.: Through-the-width delamination damage propagation characteristics in single-lap laminated FRP composite joints. Int. J. Adhes. Adhes. 29, 114–124 (2009)

    Article  Google Scholar 

  14. Gupta, A.K., Patel, B.P., Nath, Y.: Nonlinear static analysis of composite laminated plates with evolving damage. Acta Mech. 224, 1285–1298 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tornabene, F., Fantuzzi, N., Viola, E., Carrera, E.: Static analysis of doubly-curved anisotropic shells and panels using CUF approach, differential geometry and differential quadrature method. Compos. Struct. 107, 675–697 (2014)

    Article  Google Scholar 

  16. Viola, E., Rossetti, L., Fantuzzi, N., Tornabene, F.: Static analysis of functionally graded conical shells and panels using the generalized unconstrained third order theory coupled with the stress recovery. Compos. Struct. 112, 44–65 (2014)

    Article  Google Scholar 

  17. Tounsi, A., Houari, M.S.A., Benyoucef, S., Bedia, E.A.A.: A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates. Aerosp. Sci. Technol. 24, 209–220 (2013). https://doi.org/10.1016/j.ast.2011.11.009

    Article  Google Scholar 

  18. Zidi, M., Tounsi, A., Houari, M.S.A., Bedia, E.A.A., Bég, O.A.: Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory. Aerosp. Sci. Technol. 34, 24–34 (2014). https://doi.org/10.1016/j.ast.2014.02.001

    Article  Google Scholar 

  19. Kiani, Y.: Free vibration of FG-CNT reinforced composite skew plates. Aerosp. Sci. Technol. 58, 178–188 (2016)

    Article  Google Scholar 

  20. Ivanova, J., Nikolova, G., Gambin, B.: Interface delamination of bi-material structure under time harmonic load. Cohesive behavior of the interface. J. Appl. Math. Mech. 92(1), 41–51 (2012)

    MATH  Google Scholar 

  21. Mladensky, A., Rizov, V.: Non-linear fracture study of single cantilever beam specimen. J. Appl. Math. Mech. 95(11), 1243–55 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Hicks, B.J., Mullineux, G., Berry, C., McPherson, C.J., Medland, A.J.: Energy method for modelling delamination buckling in geometrically constrained systems. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 217, 1015–1026 (2003)

    Article  Google Scholar 

  23. Carneiro, C.A.V., Savi, M.A.: Modelling and simulation of the delamination in composite materials. J. Strain Anal. 35, 479–492 (2000)

    Article  Google Scholar 

  24. Wang, W., Shenoi, R.A.: Delamination modelling of a curved composite beam subjected to an opening bending moment. J. Strain. 5, 453–457 (2003)

    Article  Google Scholar 

  25. Manoach, E., Warminski, J., Warminska, A.: Large amplitude vibrations of heated Timoshenko beams with delamination. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 230, 88–101 (2016)

    Article  Google Scholar 

  26. Szekrényes, A.: Interlaminar stresses and energy release rates in delaminated orthotropic composite plates. Int. J. Solids Struct. 49, 2460–2470 (2012). https://doi.org/10.1016/j.ijsolstr.2012.05.010

    Article  Google Scholar 

  27. Szekrényes, A.: Bending solution of third-order orthotropic Reddy plates with asymmetric interfacial crack. Int. J. Solids Struct. 51, 2598–2619 (2014). https://doi.org/10.1016/j.ijsolstr.2014.03.027

    Article  Google Scholar 

  28. Szekrényes, A.: Natural vibration-induced parametric excitation in delaminated Kirchhoff plates. J. Compos. Mater. 0, 1–28 (2015). https://doi.org/10.1177/0021998315603111

    Google Scholar 

  29. Szekrenyes, A.: Semi-layerwise analysis of laminated plates with nonsingular delamination—the theorem of autocontinuity. Appl. Math. Model. (2015). https://doi.org/10.1016/j.actamat.2015.02.029

  30. Reddy, J.N., Liu, C.F.: A higher-order shear deformation theory of laminated elastic shells. Int. J. Eng. Sci. 23, 319–330 (1985). https://doi.org/10.1016/0020-7225(85)90051-5

    Article  MATH  Google Scholar 

  31. Hari Kishore, M.D.V., Singh, B.N., Pandit, M.K.: Nonlinear static analysis of smart laminated composite plate. Aerosp. Sci. Technol. 15, 224–235 (2011). https://doi.org/10.1016/j.ast.2011.01.003

    Article  Google Scholar 

  32. Ju, F., Lee, H.P., Lee, K.H.: Finite element analysis of free vibration of delaminated composite plates. Compos. Eng. 5, 195–209 (1995)

    Article  Google Scholar 

  33. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells. CRC Press, Boca Raton, FL (2004)

    MATH  Google Scholar 

  34. Singh, V.K., Panda, S.K.: Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels. Thin Walled Struct. 85, 341–349 (2014). https://doi.org/10.1016/j.tws.2014.09.003

    Article  Google Scholar 

  35. Mahapatra, T.R., Panda, S.K.: Thermoelastic vibration analysis of laminated doubly curved shallow panels using non-linear FEM. J. Therm. Stress. 38, 39–68 (2015). https://doi.org/10.1080/01495739.2014.976125

    Article  Google Scholar 

  36. Jones, R.M.: Mechanics of Composite Materials. Taylor and Francis, Philadelphia (1975)

    Google Scholar 

  37. Cook, R.D., Malkus, D.S., Plesha, M.E.: Concepts and Applications of Finite Element Analysis. Wiley, Singapore (2000)

    MATH  Google Scholar 

  38. Szekrényes, A.: The system of exact kinematic conditions and application to delaminated first-order shear deformable composite plates. Int. J. Mech. Sci. 77, 17–29 (2013). https://doi.org/10.1016/j.ijmecsci.2013.09.018

    Article  Google Scholar 

  39. Hirwani, C.K., Patil, R.K., Panda, S.K., Mahapatra, S.S., Mandal, S.K., Srivastava, L., Buragohain, M.K.: Experimental and numerical analysis of free vibration of delaminated curved panel. Aerosp. Sci. Technol. 54, 353–370 (2016). https://doi.org/10.1016/j.ast.2016.05.009

    Article  Google Scholar 

  40. Reddy, J.N.: An Introduction to the Finite Element Method, 3rd edn. McGraw-Hill, New York (2006)

    Google Scholar 

  41. Belinha, J., Dinis, L.M.J.S.: Analysis of plates and laminates using the element free Galerkin method. Compos. Struct. 84, 1547–1559 (2006)

    Article  Google Scholar 

  42. Xiao, J.R., Gilhooley, D.F., Batra, R.C., Gillespie, J.W., McCarthy, M.A.: Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory (HOSNDPT) and a meshless method. Compos. Part B Eng. 39, 414–427 (2008)

    Article  Google Scholar 

  43. Argyris, J., Tenek, L.: Linear and geometrically nonlinear bending of isotropic and multilayered composite plate by the natural mode method. Comput. Methods Appl. Mech. Eng. 113, 207–251 (1994)

    Article  MATH  Google Scholar 

  44. Zaghloul, S.A., Kennedy, J.B.: Nonlinear behavior of symmetrically laminated plates. J. Appl. Mech. 42, 234–236 (1975)

    Article  Google Scholar 

  45. Putcha, N.S., Reddy, J.N.: A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates. Comput. Struct. 22(4), 529–538 (1986)

    Article  MATH  Google Scholar 

  46. Dash, P., Singh, B.N.: Static response of geometrically nonlinear laminated composite plates having uncertain material properties. Mech. Adv. Mat. Struct. 22, 269–280 (2015)

    Article  Google Scholar 

  47. Nanda, N.: Static analysis of delaminated composite shell panels using layerwise theory. Acta Mech. 225, 2893–2901 (2014)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata K. Panda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirwani, C.K., Panda, S.K. & Patle, B.K. Theoretical and experimental validation of nonlinear deflection and stress responses of an internally debonded layer structure using different higher-order theories. Acta Mech 229, 3453–3473 (2018). https://doi.org/10.1007/s00707-018-2173-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2173-8

Navigation