Skip to main content
Log in

Transversely isotropic elastic properties of carbon nanotubes containing vacancy defects using MD

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations with Adaptive Intermolecular Reactive Empirical Bond Order force fields were conducted to determine the transversely isotropic elastic properties of carbon nanotubes (CNTs) containing vacancies. This is achieved by imposing axial extension, twist, in-plane biaxial tension, and in-plane shear to the defective CNTs. The effects of vacancy concentrations, their position, and the diameter of armchair CNTs were taken into consideration. Current results reveal that vacancy defects affect (i) the axial Young’s and shear moduli of smaller-diameter CNTs more than the larger ones and decrease by 8 and 16% for 1 and 2% vacancy concentrations, respectively; (ii) the plane strain bulk and the in-plane shear moduli of the larger-diameter CNTs more profoundly, reduced by 33 and 45% for 1 and 2% vacancy concentrations, respectively; and (iii) the plane strain bulk and in-plane shear moduli among all the elastic coefficients. It is also revealed that the position of vacancies along the length of CNTs is the main influencing factor which governs the change in the properties of CNTs, especially for vacancy concentration of 1%. The current fundamental study highlights the important role played by vacancy defected CNTs in determining their mechanical behaviors as reinforcements in multifunctional nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996). https://doi.org/10.1038/381678a0

    Article  Google Scholar 

  2. Shen, L., Li, J.: Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B. 69, 045414 (2004). https://doi.org/10.1103/PhysRevB.69.045414

    Article  Google Scholar 

  3. Shen, L., Li, J.: Transversely isotropic elastic properties of multiwalled carbon nanotubes. Phys. Rev. B. 71, 035412 (2005). https://doi.org/10.1103/PhysRevB.71.035412

    Article  Google Scholar 

  4. Al-Ostaz, A., Pal, G., Mantena, P.R., Cheng, A.: Molecular dynamics simulation of SWCNT-polymer nanocomposite and its constituents. J. Mater. Sci. 43, 164–173 (2008). https://doi.org/10.1007/s10853-007-2132-6

    Article  Google Scholar 

  5. Song, X., Ge, Q., Yen, S.-C.: A first-principles study on the elastic properties of single-walled carbon nanotubes. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 223, 163–168 (2010). https://doi.org/10.1177/17403499JNN181

    Google Scholar 

  6. Tsai, J.-L., Tzeng, S.-H., Chiu, Y.-T.: Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos. Part B Eng. 41, 106–115 (2010). https://doi.org/10.1016/j.compositesb.2009.06.003

    Article  Google Scholar 

  7. Faria, B., Silvestre, N., Canongia, J.N.: Mechanical behaviour of carbon nanotubes under combined twisting-bending. Mech. Res. Commun. 73, 19–24 (2016). https://doi.org/10.1016/j.mechrescom.2016.01.010

    Article  Google Scholar 

  8. Ajayan, P.M., Ravikumar, V., Charlier, J.-C.: Surface reconstructions and dimensional changes in single-walled carbon nanotubes. Phys. Rev. Lett. 81, 1437–1440 (1998). https://doi.org/10.1103/PhysRevLett.81.1437

    Article  Google Scholar 

  9. Belytschko, T., Xiao, S.P., Schatz, G.C., Ruoff, R.S.: Atomistic simulations of nanotube fracture. Phys. Rev. B. 65, 235430 (2002). https://doi.org/10.1103/PhysRevB.65.235430

    Article  Google Scholar 

  10. Troya, D., Mielke, S.L., Schatz, G.C.: Carbon nanotube fracture—differences between quantum mechanical mechanisms and those of empirical potentials. Chem. Phys. Lett. 382, 133–141 (2003). https://doi.org/10.1016/j.cplett.2003.10.068

    Article  Google Scholar 

  11. Lu, A.J., Pan, B.C.: Nature of single vacancy in achiral carbon nanotubes. Phys. Rev. Lett. 92, 105504 (2004). https://doi.org/10.1103/PhysRevLett.92.105504

    Article  Google Scholar 

  12. Hao, X., Qiang, H., Xiaohu, Y.: Buckling of defective single-walled and double-walled carbon nanotubes under axial compression by molecular dynamics simulation. Compos. Sci. Technol. 68, 1809–1814 (2008). https://doi.org/10.1016/j.compscitech.2008.01.013

    Article  Google Scholar 

  13. Yuan, J., Liew, K.M.: Effects of vacancy defect reconstruction on the elastic properties of carbon nanotubes. Carbon 47, 1526–1533 (2009). https://doi.org/10.1016/j.carbon.2009.01.048

    Article  Google Scholar 

  14. Chen, L., Zhao, Q., Gong, Z., Zhang, H.: The effects of different defects on the elastic constants of single-walled carbon nanotubes. In: Proceedings of the IEEE international conference on Nano/Micro engineered molecular systems (2010). https://doi.org/10.1109/NEMS.2010.5592271

  15. Fefey, E.G., Mohan, R., Kelkar, A.: Computational study of the effect of carbon vacancy defects on the Young’s modulus of (6, 6) single wall carbon nanotube. Mater. Sci. Eng. B. 176, 693–700 (2011). https://doi.org/10.1016/j.mseb.2011.02.019

    Article  Google Scholar 

  16. Ghavamian, A., Rahmandoust, M., Öchsner, A.: A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes. Comput. Mater. Sci. 62, 110–116 (2012). https://doi.org/10.1016/j.commatsci.2012.05.003

    Article  Google Scholar 

  17. Talukdar, K., Mitra, A.K.: Molecular dynamics simulation of elastic properties and fracture behavior of single wall carbon nanotubes with vacancy and Stone–Wales defect. Adv. Compos. Mater. 20, 29–38 (2011). https://doi.org/10.1163/092430410X504189

    Article  Google Scholar 

  18. Sharma, K., Saxena, K.K., Shukla, M.: Effect of multiple Stone-Wales and vacancy defects on the mechanical behavior of carbon nanotubes using molecular dynamics. Procedia Eng. 38, 3373–3380 (2012). https://doi.org/10.1016/j.proeng.2012.06.390

    Article  Google Scholar 

  19. Zhou, Z.R., Liao, K.: Effect of inter-defect interaction on tensile fatigue behavior of a single-walled carbon nanotube with Stone–Wales defects. J. Appl. Mech. 80, 051005 (2013). https://doi.org/10.1115/1.402353

    Article  Google Scholar 

  20. Rafiee, R., Pourazizi, R.: Evaluating the influence of defects on the Young’ s modulus of carbon nanotubes using stochastic modeling. Mater. Res. 17, 758–766 (2014). https://doi.org/10.1590/S1516-14392014005000071

    Article  Google Scholar 

  21. Sakharova, N.A., Pereira, A.F.G., Antunes, J.M., Fernandes, J.V.: Numerical simulation study of the elastic properties of single-walled carbon nanotubes containing vacancy defects. Compos. Part B Eng. 89, 155–168 (2016). https://doi.org/10.1016/j.compositesb.2015.11.029

    Article  Google Scholar 

  22. Alian, A.R., Meguid, S.A., Kundalwal, S.I.: Unraveling the influence of grain boundaries on the mechanical properties of polycrystalline carbon nanotubes. Carbon 125, 180–188 (2017). https://doi.org/10.1016/J.CARBON.2017.09.056

    Article  Google Scholar 

  23. Bocko, J., Lengvarský, P.: Buckling of single-walled carbon nanotubes with and without defects. J. Mech. Sci. Technol. 31, 1825–1833 (2017). https://doi.org/10.1007/s12206-017-0330-y

    Article  Google Scholar 

  24. Shahini, E., Karimi Taheri, K., Karimi Taheri, A.: An investigation on tensile properties of coiled carbon nanotubes using molecular dynamics simulation. Diam. Relat. Mater. 74, 154–163 (2017). https://doi.org/10.1016/j.diamond.2017.02.023

    Article  Google Scholar 

  25. Joshi, U.A., Sharma, S.C., Harsha, S.P.: Effect of pinhole defects on the elasticity of carbon nanotube based nanocomposites. J. Nanotechnol. Eng. Med. 2, 11003 (2011). https://doi.org/10.1115/1.4003028

    Article  Google Scholar 

  26. Yang, S., Yu, S., Cho, M.: Influence of Thrower–Stone–Wales defects on the interfacial properties of carbon nanotube/polypropylene composites by a molecular dynamics approach. Carbon 55, 133–143 (2013). https://doi.org/10.1016/j.carbon.2012.12.019

    Article  Google Scholar 

  27. Sharma, S., Chandra, R., Kumar, P., Kumar, N.: Effect of Stone–Wales and vacancy defects on elastic moduli of carbon nanotubes and their composites using molecular dynamics simulation. Comput. Mater. Sci. 86, 1–8 (2014). https://doi.org/10.1016/j.commatsci.2014.01.035

    Article  Google Scholar 

  28. Mahboob, M., Zahabul Islam, M.: Molecular dynamics simulations of defective CNT-polyethylene composite systems. Comput. Mater. Sci. 79, 223–229 (2013). https://doi.org/10.1016/j.commatsci.2013.05.042

    Article  Google Scholar 

  29. Lv, Q., Wang, Z., Chen, S., Li, C., Sun, S., Hu, S.: Effects of single adatom and Stone–Wales defects on the elastic properties of carbon nanotube/polypropylene composites: a molecular simulation study. Int. J. Mech. Sci. 131–132, 527–534 (2017). https://doi.org/10.1016/j.ijmecsci.2017.08.001

    Article  Google Scholar 

  30. Kumar, A., Singh, P.K., Sharma, K., Dwivedi, V.K.: Evaluation of elastic moduli for different patterns of Stone–Thrower–Wales defect in carbon nanotubes/epoxy composites. Mater. Today Proc. 4, 9423–9428 (2017). https://doi.org/10.1016/j.matpr.2017.06.197

    Article  Google Scholar 

  31. Kundalwal, S.I., Ray, M.C.: Effective properties of a novel composite reinforced with short carbon fibers and radially aligned carbon nanotubes. Mech. Mater. 53, 47–60 (2012). https://doi.org/10.1016/j.mechmat.2012.05.008

    Article  Google Scholar 

  32. Liu, X., Yang, Q.-S., He, X.-Q., Liew, K.-M.: Cohesive laws for van der Waals interactions of super carbon nanotube/polymer composites. Mech. Res. Commun. 72, 33–40 (2016). https://doi.org/10.1016/j.mechrescom.2015.12.004

    Article  Google Scholar 

  33. Kundalwal, S.I., Suresh Kumar, R., Ray, M.C.: Effective thermal conductivities of a novel fuzzy fiber-reinforced composite containing wavy carbon nanotubes. J. Heat Transf. 137, 012401 (2015). https://doi.org/10.1115/1.4028762

    Article  Google Scholar 

  34. Choyal, V., Kundalwal, S.I.: Interfacial characteristics of hybrid nanocomposite under thermomechanical loading. J. Mech. Behav. Mater. 26, 95–103 (2017)

    Article  Google Scholar 

  35. Mielke, S.L., Troya, D., Zhang, S., Li, J.L., Xiao, S., Car, R., Ruoff, R.S., Schatz, G.C., Belytschko, T.: The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem. Phys. Lett. 390, 413–420 (2004). https://doi.org/10.1016/j.cplett.2004.04.054

    Article  Google Scholar 

  36. Sammalkorpi, M., Krasheninnikov, A., Kuronen, A., Nordlund, K., Kaski, K.: Mechanical properties of carbon nanotubes with vacancies and related defects. Phys. Rev. B 70, 245416 (2004). https://doi.org/10.1103/PhysRevB.70.245416

    Article  Google Scholar 

  37. Haskins, R.W., Maier, R.S., Ebeling, R.M., Marsh, C.P., Majure, D.L., Bednar, A.J., Welch, C.R., Barker, B.C., Wu, D.T.: Tight-binding molecular dynamics study of the role of defects on carbon nanotube moduli and failure. J. Chem. Phys. (2007). https://doi.org/10.1063/1.2756832

    Google Scholar 

  38. Ho, T., Rai, P., Xie, J., Varadan, V.K., Hestekin, J.A.: Stable flexible electrodes with enzyme cluster decorated carbon nanotubes for glucose-driven power source in biosensing applications. J. Nanotechnol. Eng. Med. 1, 041013 (2010). https://doi.org/10.1115/1.4002731

    Article  Google Scholar 

  39. Zhang, Y., Bai, Y., Yan, B.: Functionalized carbon nanotubes for potential medicinal applications. Drug Discov. Today 15, 428–435 (2010). https://doi.org/10.1016/j.drudis.2010.04.005

    Article  Google Scholar 

  40. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  MATH  Google Scholar 

  41. Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000). https://doi.org/10.1063/1.481208

    Article  Google Scholar 

  42. Ansari, R., Rouhi, H., Nasiri Rad, A.: Vibrational analysis of carbon nanocones under different boundary conditions: an analytical approach. Mech. Res. Commun. 56, 130–135 (2014). https://doi.org/10.1016/j.mechrescom.2013.12.010

    Article  Google Scholar 

  43. Krasheninnikov, A.V., Nordlund, K.: Irradiation effects in carbon nanotubes. Nucl. Instrum. Methods Phys. Res. Sect. B 216, 355–366 (2004). https://doi.org/10.1016/j.nimb.2003.11.061

    Article  Google Scholar 

  44. Haghighatpanah, S., Bolton, K.: Molecular-level computational studies of single wall carbon nanotube polyethylene composites. Comput. Mater. Sci. 69, 443–454 (2013). https://doi.org/10.1016/j.commatsci.2012.12.012

    Article  Google Scholar 

  45. Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015). https://doi.org/10.1016/j.polymer.2015.06.004

    Article  Google Scholar 

  46. Chang, T., Gao, H.: Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003). https://doi.org/10.1016/S0022-5096(03)00006-1

    Article  MATH  Google Scholar 

  47. Xiao, J.R., Gama, B.A., Gillespie, J.W.: An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075–3092 (2005). https://doi.org/10.1016/j.ijsolstr.2004.10.031

    Article  MATH  Google Scholar 

  48. Hashin, Z., Rosen, B.W.: The elastic moduli of fiber-reinforced materials. J. Appl. Mech. 31, 223–232 (1964). https://doi.org/10.1115/1.3629590

    Article  Google Scholar 

  49. Hung, N.T., Truong, D.V., Thanh, V.V., Saito, R.: Intrinsic strength and failure behaviors of ultra-small single-walled carbon nanotubes. Comput. Mater. Sci. 114, 167–171 (2016). https://doi.org/10.1016/j.commatsci.2015.12.036

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kundalwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundalwal, S.I., Choyal, V. Transversely isotropic elastic properties of carbon nanotubes containing vacancy defects using MD. Acta Mech 229, 2571–2584 (2018). https://doi.org/10.1007/s00707-018-2123-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2123-5

Navigation