Skip to main content
Log in

Analytical solutions for the thermal vibration of strain gradient beams with elastic boundary conditions

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A strain gradient Euler beam described by a sixth-order differential equation is used to investigate the thermal vibrations of beams made of strain gradient elastic materials. The sixth-order differential equation of motion and elastic boundary conditions are determined simultaneously by a variation formulation based on Hamilton’s principle. Analytical solutions for the free vibration of the elastic constraint strain gradient beams subjected to axial thermal stress are obtained. The effects of the thermal stress, nonlocal effect parameter, and boundary spring stiffness on the vibration behaviors of the strain gradient beams are investigated. The results show that the natural frequencies obtained by the strain gradient Euler beam model with the thermal stress decrease while the temperature is rising. The thermal effects are sensitive to the boundary spring stiffness at a certain stiffness range. In addition, numerical results also show the importance of the nonlocal effect parameter on the vibration of the strain gradient beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T., Smalley, R.E.: Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147–150 (1996)

    Article  Google Scholar 

  2. Hung, E.S., Senturia, S.D.: Extending the travel range of analog-tuned electrostatic actuators. J. Microelectromech. Syst. 8(4), 497–505 (1999)

    Article  Google Scholar 

  3. Harris, P.J.F.: Carbon Nanotubes and Related Structures. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  4. Moser, Y., Gijs, M.A.M.: Miniaturized flexible temperature sensor. J. Microelectromech. Syst. 16(6), 1349–1354 (2007)

    Article  Google Scholar 

  5. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  6. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  7. Ma, Q., Clarke, D.R.: Size dependent hardness in silver single crystals. J. Mater. Res. 10, 853–863 (1995)

    Article  Google Scholar 

  8. Stolken, J.S., Evans, A.G.: Microbend test method for measuring the plasticity length scale. Acta Metall. Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  9. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  Google Scholar 

  10. Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  MATH  Google Scholar 

  11. Reddy, J.N., Pang, S.D.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103, 023511 (2008)

    Article  Google Scholar 

  12. Civalek, O., Demir, C.: Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory. Appl. Math. Model. 35, 2053–2067 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Thai, H.T.: A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)

    Article  MathSciNet  Google Scholar 

  14. Zhang, Z., Challamel, N., Wang, C.M.: Eringen’s small length scale coefficient for buckling of nonlocal Timoshenko beam based on microstructured beam model. J. Appl. Phys. 114, 114902 (2013)

    Article  Google Scholar 

  15. Tuna, M., Kirca, M.: Exact solution of Eringen’s nonlocal integral model for vibration and buckling of Euler–Bernoulli beam. Int. J. Eng. Sci. 107, 54–67 (2016)

    Article  Google Scholar 

  16. Zhang, Y.Q., Liu, G.R., Xie, X.Y.: Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys. Rev. B 71, 195404 (2005)

    Article  Google Scholar 

  17. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30, 1279–1299 (1992)

    Article  MATH  Google Scholar 

  18. Aifantis, E.C.: Strain gradient interpretation of size effects. Int. J. Fract. 95, 299–314 (1999)

    Article  Google Scholar 

  19. Askes, H., Suiker, A.S.J., Sluys, L.J.: A classification of higher-order strain-gradient models–linear analysis. Arch. Appl. Mech. 72, 171–188 (2002)

    Article  MATH  Google Scholar 

  20. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  21. Bazant, Z.P., Guo, Z.Y.: Size effect and asymptotic matching approximations in strain-gradient theories of micro-scale plasticity. Int. J. Solids Struct. 39, 5633–5657 (2002)

    Article  MATH  Google Scholar 

  22. Wang, L.F., Hu, H.Y.: Flexural wave propagation in single-walled carbon nanotubes. Phys. Rev. B 71, 195412 (2005)

    Article  Google Scholar 

  23. Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kong, S.L., Zhou, S.J., Nie, Z.F., Wang, K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487–498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lazopoulos, K.A., Lazopoulos, A.K.: Bending and buckling of thin strain gradient elastic beams. Eur. J. Mech. A Solids 29, 837–843 (2010)

    Article  MATH  Google Scholar 

  26. Ansari, R., Gholami, R., Faghih, M.S., Mohammadi, V., Sahmani, S.: Bending, buckling and free vibration analysis of size-dependent functionally graded circular/annular microplates based on the modified strain gradient elasticity theory. Eur. J. Mech. A Solids 49, 251–267 (2015)

    Article  MathSciNet  Google Scholar 

  27. Xu, W., Wang, L.F., Jiang, J.N.: Strain gradient finite element analysis on the vibration of double-layered graphene sheets. Int. J. Comput. Methods 13(3), 650011 (2016)

    Article  MathSciNet  Google Scholar 

  28. Xu, X.J., Deng, Z.C.: Closed-form frequency solutions for simplified strain gradient beams with higher-order inertia. Eur. J. Mech. A Solids 56, 59–72 (2016)

    Article  MathSciNet  Google Scholar 

  29. Zhang, Y.Y., Wang, C.M., Challamel, N.: Bending, buckling, and vibration of micro/nanobeams by hybrid nonlocal beam model. J. Eng. Mech. 136(5), 562–574 (2010)

    Article  Google Scholar 

  30. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, X.B., Li, L., Hu, Y.J., Ding, Z., Deng, W.M.: Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos. Struct. 165, 250–265 (2017)

    Article  Google Scholar 

  32. Lu, L., Guo, X.M., Zhao, J.Z.: Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. Int. J. Eng. Sci. 116, 12–24 (2017)

    Article  MathSciNet  Google Scholar 

  33. Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D., Beskos, D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 40, 385–400 (2003)

    Article  MATH  Google Scholar 

  34. Papargyri-Beskou, S., Beskos, D.E.: Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch. Appl. Mech. 78, 625–635 (2008)

    Article  MATH  Google Scholar 

  35. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)

    Article  Google Scholar 

  36. Artan, R., Toksöz, A.: Stability analysis of gradient elastic beams by the method of initial value. Arch. Appl. Mech. 83, 1129–1144 (2013)

    Article  Google Scholar 

  37. Pegios, I.P., Papargyri-Beskou, S., Beskos, D.E.: Finite element static and stability analysis of gradient elastic beam structures. Acta Mech. 226, 745–768 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Papargyri-Beskou, S., Giannakopoulos, A.E., Beskos, D.E.: Variational analysis of gradient elastic flexural plates under static loading. Int. J. Solids Struct. 47, 2755–2766 (2010)

    Article  MATH  Google Scholar 

  39. Xiang, Y., Liew, K.M., Kitipornchai, S.: Vibration analysis of rectangular Mindlin plates resting on elastic edge supports. J. Sound Vib. 204, 1–16 (1997)

    Article  MATH  Google Scholar 

  40. Li, W.L.: Free vibrations of beams with general boundary conditions. J. Sound Vib. 237(4), 709–725 (2000)

    Article  Google Scholar 

  41. Zhou, D.: Vibrations of Mindlin rectangular plates with elastically restrained edges using static Timoshenko beam functions with the Rayleigh–Ritz method. Int. J. Solids Struct. 38, 5565–80 (2001)

    Article  MATH  Google Scholar 

  42. Li, W.L.: Vibration analysis of rectangular plates with general elastic boundary supports. J. Sound Vib. 273, 619–635 (2004)

    Article  Google Scholar 

  43. Malekzadeh, P., Shahpari, S.A.: Free vibration analysis of variable thickness thin and moderately thick plates with elastically restrained edges by DQM. Thin Walled Struct. 43, 1037–1050 (2005)

    Article  Google Scholar 

  44. Malekzadeha, P., Karami, G.: Large amplitude flexural vibration analysis of tapered plates with edges elastically restrained against rotation using DQM. Eng. Struct. 30, 2850–2858 (2008)

    Article  Google Scholar 

  45. Xing, J.Z., Wang, Y.G.: Free vibrations of a beam with elastic end restraints subject to a constant axial load. Arch. Appl. Mech. 83, 241–252 (2013)

    Article  MATH  Google Scholar 

  46. Suddoung, K., Charoensuk, J., Wattanasakulpong, N.: Vibration response of stepped FGM beams with elastically end constraints using differential transformation method. Appl. Acoust. 77, 20–28 (2014)

    Article  Google Scholar 

  47. Wattanasakulpong, N., Mao, Q.B.: Dynamic response of Timoshenko functionally graded beams with classical and non-classical boundary conditions using Chebyshev collocation method. Compos. Struct. 119, 346–354 (2015)

    Article  Google Scholar 

  48. Zhang, L.W., Cui, W.C., Liew, K.M.: Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges. Int. J. Mech. Sci. 103, 9–21 (2015)

    Article  Google Scholar 

  49. Jiang, J.N., Wang, L.F., Zhang, Y.Q.: Vibration of single-walled carbon nanotubes with elastic boundary conditions. Int. J. Mech. Sci. 122, 156–166 (2017)

    Article  Google Scholar 

  50. Kiani, K.: A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect. Int. J. Mech. Sci. 52, 1343–1356 (2010)

    Article  Google Scholar 

  51. Kiani, K.: Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subjected to axial load using nonlocal shear deformable beam theories. Int. J. Mech. Sci. 68, 16–34 (2013)

    Article  Google Scholar 

  52. Rosa, M.A.D., Lippiello, M.: Nonlocal frequency analysis of embedded single-walled carbon nanotube using the differential quadrature method. Compos. Part B 84, 41–51 (2016)

    Article  Google Scholar 

  53. Malekzadeh, P., Golbahar Haghighi, M.R., Atashi, M.M.: Free vibration analysis of elastically supported functionally graded annular plates subjected to thermal environment. Meccanica 46, 893–913 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, L.F., Hu, H.Y.: Thermal vibration of a simply supported single-walled carbon nanotube with thermal stress. Acta Mech. 227, 1957–1967 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Shen, H.S., Noda, N.: Postbuckling of pressure-loaded FGM hybrid cylindrical shells in thermal environments. Compos. Struct. 77, 546–560 (2007)

    Article  Google Scholar 

  56. Zhang, Y.Q., Liu, X., Liu, G.R.: Thermal effect on transverse vibrations of double-walled carbon nanotubes. Nanotechnology 18, 445701 (2007)

    Article  Google Scholar 

  57. Benzair, A., Tounsi, A., Besseghier, A., Heireche, H., Moulay, N., Boumia, L.: The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. J. Phys. D Appl. Phys. 41, 225404 (2008)

    Article  Google Scholar 

  58. Zhen, Y.X., Fang, B.: Thermal–mechanical and nonlocal elastic vibration of single-walled carbon nanotubes conveying fluid. Comput. Mater. Sci. 49, 276–282 (2010)

    Article  Google Scholar 

  59. Wang, Y.Z., Li, F.M., Kishimoto, K.: Thermal effects on vibration properties of double-layered nanoplates at small scales. Compos. Part B 42, 1311–1317 (2011)

    Article  Google Scholar 

  60. Ansari, R., Ramezannezhad, H.: Nonlocal Timoshenko beam model for the large-amplitude vibrations of embedded multiwalled carbon nanotubes including thermal effects. Physica E 43, 1171–1178 (2011)

    Article  Google Scholar 

  61. Ebrahimi, F., Salari, E.: Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment. Acta Astronaut. 113, 29–50 (2015)

    Article  Google Scholar 

  62. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M., Kazemi, M.: On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment. Appl. Phys. A 123, 315 (2017)

    Article  Google Scholar 

  63. Arslan, E., Mack, W., Eraslan, A.N.: Effect of a temperature cycle on a rotating elastic–plastic shaft. Acta Mech. 195, 129–140 (2008)

    Article  MATH  Google Scholar 

  64. Ohmichi, M., Noda, N., Ishihara, M.: The effect of oblique functional gradation to transient thermal stresses in the functionally graded infinite strip. Acta Mech. 212, 219–232 (2010)

    Article  MATH  Google Scholar 

  65. Brischetto, S., Carrera, E.: Thermomechanical effect in vibration analysis of one-layered and two-layered plates. Int. J. Appl. Mech. 3(1), 161–185 (2011)

    Article  Google Scholar 

  66. Ke, L.L., Wang, Y.S., Wang, Z.D.: Thermal effect on free vibration and buckling of size-dependent microbeams. Physica E 43, 1387–1393 (2011)

    Article  Google Scholar 

  67. Farokhi, H., Ghayesh, M.H.: Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams. Int. J. Eng. Sci. 91, 12–33 (2015)

    Article  MathSciNet  Google Scholar 

  68. Ansari, R., Gholami, R., Norouzzadeh, A.: Size-dependent thermo-mechanical vibration and instability of conveying fluid functionally graded nanoshells based on Mindlin’s strain gradient theory. Thin Walled Struct. 105, 172–184 (2016)

    Article  Google Scholar 

  69. Ebrahimi, F., Barati, M.R.: Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects. Acta Mech. 228, 1197–1210 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  70. Ebrahimi, F., Barati, M.R.: Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory. Compos. Struct. 159, 433–444 (2017)

    Article  Google Scholar 

  71. Rahmani, O., Hosseini, S.A.H., Ghoytasi, I., Golmohammadi, H.: Buckling and free vibration of shallow curved micro/nanobeam based on strain gradient theory under thermal loading with temperature-dependent properties. Appl. Phys. A 123, 4 (2017)

    Article  Google Scholar 

  72. Nematollahi, M.S., Mohammadi, H., Nematollahi, M.A.: Thermal vibration analysis of nanoplates based on the higher order nonlocal strain gradient theory by an analytical approach. Superlattices Microstruct. 111, 944–959 (2017)

    Article  Google Scholar 

  73. Fan, S.J.: A new extracting formula and a new distinguishing means on the one variable cubic equation. J. Hainan Norm. Coll. (Nat. Sci. Ed.) 2, 91–98 (1989)

    Google Scholar 

  74. Artan, R., Batra, R.C.: Free vibrations of a strain gradient beam by the method of initial values. Acta Mech. 223, 2393–2409 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 11522217 and 11632003, in part by Funding of Jiangsu Innovation Program for Graduate Education under Grant KYLX15-0234, in part 333 Talents Program in Jiangsu Province under Grant BRA2017374, and in part by the Natural Science Foundation of Jiangsu Province under Grant BK20171411.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Wang, L. Analytical solutions for the thermal vibration of strain gradient beams with elastic boundary conditions. Acta Mech 229, 2203–2219 (2018). https://doi.org/10.1007/s00707-017-2105-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2105-z

Navigation