Skip to main content
Log in

Thermal buckling analysis of stiffened FGM truncated conical shells resting on elastic foundations using FSDT

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This work presents an analytical approach to investigate the mechanical and thermal buckling of functionally graded material truncated conical shells resting on Pasternak elastic foundations, subjected to thermal load and axial compressive load. The shells are reinforced by closely spaced stringers and rings. The change in spacing between the stringers in the meridional direction is also taken into account. Two cases on uniform temperature rise and linear temperature distribution through the thickness of the shell are considered. Using the first-order shear deformation theory, Lekhnitskii smeared stiffener technique and the adjacent equilibrium criterion, the linearization stability equations are established. An approximate solution satisfies simply supported boundary conditions, and the Galerkin method is applied to obtain a closed-form expression for determining the critical compression buckling load and thermal buckling load in cases of uniform temperature rise and linear temperature distribution across the shell thickness. The effects of temperature, foundation, stiffeners, material properties, dimensional parameters and semi-vertex angle on the buckling behaviors of shell are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koizumi, M.: The concept of FGM. Ceram. Trans. Funct. Grad. Mater. 34, 3–10 (1993)

    Google Scholar 

  2. Najafizadeh, M.M., Hasani, A., Khazaeinejad, P.: Mechanical stability of functionally graded stiffened cylindrical shells. Appl. Math. Model. 33, 1151–1157 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tornabene, F., Viola, E., Inman, D.J.: 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures. J. Sound Vib. 328, 259–290 (2009)

    Article  Google Scholar 

  4. Tornabene, F.: Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Comput. Methods Appl. Mech. Eng. 198, 2911–2935 (2009)

    Article  MATH  Google Scholar 

  5. Bagherizadeh, E., Kiani, Y., Eslami, M.R.: Mechanical buckling of functionally graded material cylindrical shells surrounded by Pasternak elastic foundation. Compos. Struct. 93, 3063–7301 (2011)

    Article  Google Scholar 

  6. Bagherizadeh, E., Kiani, Y., Eslami, M.R.: Thermal buckling of functionally graded material cylindrical shells on elastic foundation. AIAA J. 50, 500–503 (2012)

    Article  Google Scholar 

  7. Sofiyev, A.H., Kuruoglu, N.: Torsional vibration and buckling of the cylindrical shell with functionally graded coatings surrounded by an elastic medium. Compos. Part B 45, 1133–1142 (2013)

    Article  Google Scholar 

  8. Dung, D.V., Hoa, L.K.: Nonlinear buckling and postbuckling analysis of eccentrically stiffened functionally graded circular cylindrical shells under external pressure. Thin-Wall. Struct. 63, 117–124 (2013)

    Article  Google Scholar 

  9. Dung, D.V., Hoa, L.K.: Research on nonlinear torsional buckling and post-buckling of eccentrically stiffened functionally graded thin circular cylindrical shells. Compos. Part B 51, 300–309 (2013)

    Article  Google Scholar 

  10. Dung, D.V., Hoa, L.K.: Semi-analytical approach for analyzing the nonlinear dynamic torsional buckling of stiffened functionally graded material circular cylindrical shells surrounded by an elastic medium. Appl. Math. Model. 39, 6951–6967 (2015)

    Article  MathSciNet  Google Scholar 

  11. Sabzikar Boroujerdy, M., Naj, R., Kiani, Y.: Buckling of heated temperature dependent FGM cylindrical shell surrounded by elastic medium. Theor. Appl. Mech. 52(4), 869–881 (2014)

    Article  Google Scholar 

  12. Castro, S., Mittelstedt, C., Monteiro, F., Arbelo, M., Ziegmann, G., Degenhardt, R.: Linear buckling predictions of unstiffened laminated composite cylinders and cones under various loading and boundary conditions using semi-analytical models. Compos. Struct. 118, 303–315 (2014)

    Article  Google Scholar 

  13. Dung, D.V., Nam, V.H.: Nonlinear dynamic analysis of eccentrically stiffened functionally graded circular cylindrical thin shells under external pressure and surrounded by an elastic medium. Eur. J. Mech. A/Solids 46, 42–53 (2014)

    Article  MathSciNet  Google Scholar 

  14. Dung, D.V., Hoa, L.K.: Research on nonlinear torsional buckling and post-buckling of eccentrically stiffened FGM cylindrical shell in thermal environment. Compos. Part B. Eng. 69, 378–388 (2015)

    Article  Google Scholar 

  15. Asadi, H., Kiani, Y., Aghdam, M.M., Shakeri, M.: Enhanced thermal buckling of laminated composite cylindrical shells with shape memory alloy. Compos. Mater. 50, 243–256 (2016)

    Article  Google Scholar 

  16. Tung, H.V.: Nonlinear thermomechanical stability of shear deformable FGM shallow spherical shells resting on elastic foundations with temperature dependent properties. Compos. Struct. 114, 107–116 (2014)

    Article  Google Scholar 

  17. Tornabene, F., Viola, E.: Static analysis of functionally graded doubly-curved shells and panels of revolution. Meccanica 48, 901–930 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bich, D.H., Dung, D.V., Nam, V.H.: Nonlinear dynamic analysis of eccentrically stiffened imperfect functionally graded doubly curved thin shallow shells. Compos. Struct. 96, 384–395 (2013)

    Article  Google Scholar 

  19. Tornabene, F., Fantuzzi, N., Viola, E., Reddy, J.N.: Winkler-Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels. Compos. Part B 57, 269–296 (2014)

    Article  Google Scholar 

  20. Tornabene, F., Fantuzzi, N., Viola, E., Batra, R.C.: Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory. Compos. Struct. 119, 67–89 (2015)

    Article  Google Scholar 

  21. Tornabene, F., Fantuzzi, N., Bacciocchi, M., Viola, E., Reddy, J.N.: A numerical investigation on the natural frequencies of FGM sandwich shells with variable thickness by the local generalized differential quadrature method. Appl. Sci. 7(131), 1–39 (2017)

    Google Scholar 

  22. Tornabene, F., Viola, E.: Free vibrations of four-parameter functionally graded parabolic panels and shells of revolution. Eur. J. Mech. A/Solids 28, 991–1013 (2009)

    Article  MATH  Google Scholar 

  23. Tornabene, F., Viola, E.: Free vibration analysis of functionally graded panels and shells of revolution. Meccanica 44, 255–281 (2009)

    Article  MATH  Google Scholar 

  24. Mecitoglu, Z.: Vibration characteristics of a stiffened conical shell. J. Sound Vib. 197(2), 191–206 (1996)

    Article  MATH  Google Scholar 

  25. Rao, S.S., Reddy, E.S.: Optimum design of stiffened conical shells with natural frequency constraints. Compos. Struct. 14(1–2), 103–110 (1981)

    Article  MATH  Google Scholar 

  26. Sofiyev, A.H.: Thermoelastic stability of functionally graded truncated conical shells. Compos. Struct. 77, 56–65 (2007)

    Article  Google Scholar 

  27. Sofiyev, A.H.: The buckling of FGM truncated conical shells subjected to combined axial tension and hydrostatic pressure. Compos. Struct. 92, 488–498 (2010)

    Article  Google Scholar 

  28. Sofiyev, A.H.: Buckling analysis of freely-supported functionally graded truncated conical shells under external pressures. Compos. Struct. 132, 746–758 (2015)

    Article  Google Scholar 

  29. Sofiyev, A.H.: The buckling of FGM truncated conical shells subjected to axial compressive load and resting on Winkler-Pasternak foundations. Int. J. Press. Vess. Pip. 87, 753–761 (2010)

    Article  Google Scholar 

  30. Naj, R., Boroujerdy, M.S., Eslami, M.R.: Thermal and mechanical instability of functionally graded truncated conical shells. Thin-Wall. Struct. 46, 65–78 (2008)

    Article  Google Scholar 

  31. Bich, D.H., Phuong, N.T., Tung, H.V.: Buckling of functionally graded conical panels under mechanical loads. Compos. Struct. 94, 1379–1384 (2012)

    Article  Google Scholar 

  32. Torabi, J., Kiani, Y., Eslami, M.R.: Linear thermal buckling analysis of truncated hybrid FGM conical shells. Compos. Part B 50, 265–272 (2013)

    Article  Google Scholar 

  33. Sofiyev, A.H., Kuruoglu, N.: Nonlinear buckling of an FGM truncated conical shells surrounded by an elastic medium. Int. J. Press. Vess. Pip. 107, 38–49 (2013)

    Article  Google Scholar 

  34. Dung, D.V., Hoa, L.K., Nga, N.T., Anh, L.T.N.: Instability of eccentrically stiffened functionally graded truncated conical shells under mechanical loads. Compos. Struct. 106, 104–113 (2013)

    Article  Google Scholar 

  35. Akbari, M., Kiani, Y., Aghdam, M.M., Eslami, M.R.: Free vibration of FGM Lévy conical panels. Compos. Struct. 116, 732–746 (2014)

    Article  Google Scholar 

  36. Viola, E., Rossetti, L., Fantuzzi, N., Tornabene, F.: Static analysis of functionally graded conical shells and panels using the generalized unconstrained third order theory coupled with the stress recovery. Compos. Struct. 112, 44–65 (2014)

    Article  Google Scholar 

  37. Jam, J.E., Kiani, Y.: Buckling of pressurized functionally graded carbon nanotube reinforced conical shells. Compos. Struct. 125, 586–595 (2015)

    Article  Google Scholar 

  38. Nejad, M.Z., Jabbari, M., Ghannad, M.: Elastic analysis of FGM rotating thick truncated conical shells with axially-varying properties under non-uniform pressure loading. Compos. Struct. 122, 561–559 (2015)

    Article  Google Scholar 

  39. Akbari, M., Kiani, Y., Eslami, M.R.: Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports. Acta Mech. 226, 897–915 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mirzaei, M., Kiani, Y.: Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells. Aerosp. Sci. Technol. 47, 42–53 (2015)

    Article  Google Scholar 

  41. Castro, S., Mittelstedt, C., Monteiro, F., Arbelo, M., Ziegmann, G., Degenhardt, R.: A semi-analytical approach for the linear and non-linear buckling analysis of imperfect unstiffened laminated composite cylinders and cones under axial, torsion and pressure loads. Thin-Wall. Struct. 90, 61–73 (2015)

    Article  Google Scholar 

  42. Duc, N.D., Cong, P.H.: Nonlinear thermal stability of eccentrically stiffened functionally graded conical shells surrounded on elastic foundations. Eur. J. Mech. A/Solids 50, 120–131 (2015)

    Article  MathSciNet  Google Scholar 

  43. Sofiyev, A.H., Kuruoglu, N.: The stability of FGM truncated conical shells under combined axial and external mechanical loads in the framework of the shear deformation theory. Compos. Part B 92, 463–476 (2016)

    Article  Google Scholar 

  44. Brush, D.O., Almroth, B.O.: Buckling of Bars, Plates and Shells. McGraw-Hill, New York (1975)

    MATH  Google Scholar 

  45. Volmir, A.S.: The Stability of Deformable Systems. Nauka, Moscow (1967). (in Russian)

    Google Scholar 

  46. Xu, C.S., Xia, Z.Q., Chia, C.Y.: Nonlinear theory and vibration analysis of laminated truncated thick conical shells. Int. J. Non-Linear Mech. 31(2), 139–154 (1996)

    Article  MATH  Google Scholar 

  47. Tong, L., Wang, T.K.: Simple solutions for buckling of laminated conical shells. Int. J. Mech. Sci. 34(2), 93–111 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Quang Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, D.Q., Van Dung, D. & Hoa, L.K. Thermal buckling analysis of stiffened FGM truncated conical shells resting on elastic foundations using FSDT. Acta Mech 229, 2221–2249 (2018). https://doi.org/10.1007/s00707-017-2090-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2090-2

Navigation