Skip to main content
Log in

The interaction of a mode II crack with an inhomogeneity undergoing a stress-free transformation strain

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this investigation, general approximate solutions for the stress intensity factor (SIF) and configuration force (CF) are derived, respectively, based on the Eshelby theory for the interaction between an inhomogeneous inclusion of arbitrary shape undergoing a stress-free transformation strain and plane stress mode II crack. For common inclusion shapes, some simplified approximate formulae are also developed. Then, the relationship between the normalized CF and SIF is discussed, as well as the effects of inclusion shape, location, and size on the CF and SIF of a plane stress mode II crack. To give deep insight into the complex three-dimensional interaction between an inclusion undergoing a stress-free transformation strain and a crack, two typical cases of the triaxial stress state are analyzed, and no significant difference occurs among most engineering materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ubale, A.U., Deshpande, V.P.: Effect of manganese inclusion on structural, optical and electrical properties of ZnO thin films. J. Alloy Compd. 500, 138–143 (2010)

    Article  Google Scholar 

  2. Park, S., Ji, H.Y., Kim, M.J., Peck, J.H., Kim, K.: Enhanced quantum efficiency of amorphous silicon thin film solar cells with the inclusion of a rear-reflector thin film. Appl. Phys. Lett. 104, 073902 (2014)

    Article  Google Scholar 

  3. Pappacena, K.E., Singh, D., Ajayi, O.O., Routbort, J.L., Erilymaz, O.L., Demas, N.G., Chen, G.: Residual stresses, interfacial adhesion and tribological properties of MoN/Cu composite coatings. Wear 278, 62–70 (2012)

    Article  Google Scholar 

  4. Liu, M., Wang, X., Liu, Q., Gao, H.: Application of smart coating sensor in crack detection for aircraft. Appl. Mech. Mater. 152–154, 554–559 (2012)

    Article  Google Scholar 

  5. Sun, Y., Liu, M.: Analysis of the crack penetration/deflection at the interfaces in the intelligent coating system utilizing virtual crack closure technique. Eng. Fract. Mech. 133, 152–162 (2015)

    Article  Google Scholar 

  6. Freund, L., Suresh, S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  7. Steffensen, S., Kibsgaard, R.L., Jensen, H.M.: Debonding of particles in thin films. Int. J. Solid Struct. 51, 2850–2856 (2014)

    Article  Google Scholar 

  8. Sun, Y., Yang, J., Wang, B., Liu, M.: The interaction of the plane stress mode I crack with an inhomogeneity undergoing a stress-free transformation strain. Int. J. Appl. Mech. 7, 1550040 (2015)

    Article  Google Scholar 

  9. Zhou, K., Hoh, H.J., Wang, X., Keer, L.M., Pang, J.H., Song, B., Wang, Q.J.: A review of recent works on inclusions. Mech. Mater. 60, 144–158 (2013)

    Article  Google Scholar 

  10. Taya, M., Chou, T.W.: On two kinds of ellipsoidal inhomogeneities in an infinite elastic body: an application to a hybrid composite. Int. J. Solid Struct. 17, 553–563 (1981)

    Article  MATH  Google Scholar 

  11. Wang, X., Pan, E., Chung, P.W.: On a semi-infinite crack penetrating a piezoelectric circular inhomogeneity with a viscous interface. Int. J. Solid Struct. 46, 203–216 (2009)

    Article  MATH  Google Scholar 

  12. Eshelby, J.D.: The determination of the elastic fields of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. Ser. A 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lambropoulos, J.C.: Shear, shape and orientation effects in transformation toughening. Int. J. Solid Struct. 22, 1083–1106 (1986)

    Article  Google Scholar 

  14. Eshelby, J.D.: The force on an elastic singularity. Philos. Trans. R. Soc. Lond. Ser. A 244, 87–112 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, Z., Chen, Q.: Crack-inclusion interaction for mode I crack analyzed by Eshelby equivalent inclusion method. Int. J. Fract. 118, 29–40 (2002)

    Article  Google Scholar 

  16. Yang, L., Chen, Q., Li, Z.: Crack-inclusion interaction for mode II crack analyzed by Eshelby equivalent inclusion method. Eng. Fract. Mech. 71, 1421–1433 (2004)

    Article  Google Scholar 

  17. Li, H., Yang, J., Li, Z.: An approximate solution for the plane stress mode I crack interacting with an inclusion of arbitrary shape. Eng. Fract. Mech. 116, 190–196 (2014)

    Article  Google Scholar 

  18. Yang, J., Li, H., Li, Z.: Approximate analytical solution for plane stress mode II crack interacting with an inclusion of any shape. Eur. J. Mech. A/Solid 49, 293–298 (2015)

    Article  Google Scholar 

  19. Zhou, R., Li, Z., Sun, J.: Crack deflection and interface debonding in composite materials elucidated by the configuration force theory. Compos Part B 42, 1999–2003 (2011)

    Article  Google Scholar 

  20. Brencich, A., Carpinteri, A.: Stress field interaction and strain energy distribution between a stationary main crack and its process zone. Eng. Fract. Mech. 59, 797–814 (1998)

    Article  Google Scholar 

  21. Withers, P.J., Stobbs, W.M., Pedersen, O.B.: The application of the Eshelby method of internal stress determination to short fibre metal matrix composites. Acta Metall. 37, 3061–3084 (1989)

    Article  Google Scholar 

  22. Li, Z., Yang, L.: The application of the Eshelby equivalent inclusion method for unifying modulus and transformation toughening. Int. J. Solid Struct. 39, 5225–5240 (2002)

    Article  MATH  Google Scholar 

  23. Mura, T.: Micromechanics of Defects in Solids, 2nd edn. Martinus Nijhoff Publishers, Dordrecht (1987)

    Book  MATH  Google Scholar 

  24. Mura, T.: A theory of fatigue crack initiation. Mater. Sci. Eng. A 176, 61–70 (1994)

    Article  Google Scholar 

  25. Gross, D., Mueller, R., Kolling, S.: Configurational forces-morphology evolution and finite elements. Mech. Res. Commun. 29, 529–536 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sharma, P., Ganti, S.: Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 71, 663–671 (2004)

    Article  MATH  Google Scholar 

  27. Zhou, K., Keer, L.M., Wang, Q.J., Ai, X.L., Sawamiphakdi, K., Glaws, P., Paire, M., Che, F.: Interaction of multiple inhomogeneous inclusions beneath a surface. Comput. Method. Appl. Mech. Eng. 217, 25–33 (2012)

    Article  Google Scholar 

  28. Wang, X., Zhou, K.: Long-range interaction of a line dislocation with multiple multicoated inclusions of arbitrary shape. Acta Mech. 224, 63–70 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, Q.D., Xu, K.Y., Pan, E.: Inclusion of an arbitrary polygon with graded eigenstrain in an anisotropic piezoelectric half plane. Int. J. Solid Struct. 51, 53–62 (2014)

    Article  Google Scholar 

  30. Ippolito, M., Mattoni, A., Colombo, L., Pugno, N.: Role of lattice discreteness on brittle fracture: atomistic simulations versus analytical models. Phys. Rev. B 73, 104111 (2006)

    Article  Google Scholar 

  31. Shi, J., Li, Z.: The interaction of an edge dislocation with an inclusion of arbitrary shape analyzed by the Eshelby inclusion method. Acta Mech. 161, 31–37 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mabao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Yu, X., Jia, W. et al. The interaction of a mode II crack with an inhomogeneity undergoing a stress-free transformation strain. Acta Mech 229, 1311–1320 (2018). https://doi.org/10.1007/s00707-017-2041-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2041-y

Navigation