Skip to main content
Log in

Thermoelastic deformation of reinforced chiral cylinders

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper is concerned with the deformation of a chiral elastic bar subjected to a thermal field. The bar is composed of two different materials welded together along the surface of separation. The behavior of chiral materials is of interest for the investigation of bones and auxetic materials. We study the deformation of isotropic chiral materials by using the equilibrium theory of Cosserat thermoelasticity. The temperature variation is assumed to be a polynomial in the axial coordinate. It is shown that a plane thermal field, in contrast with the result predicted by the theory of achiral materials, produces torsional effects. The solution of the problem could be used to investigate the behavior of bone implants and other compound cylinders. The method is applied to the case of a circular bar reinforced by a longitudinal circular rod.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lakes, R.: Elastic and viscoelastic behaviour of chiral materials. Int. J. Mech. Sci. 43, 1579–1589 (2001)

    Article  MATH  Google Scholar 

  2. Healey, T.J.: Material symmetry and chirality in nonlinearly elastic rods. Math. Mech. Solids 7, 405–420 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Natroshvili, D., Giorgashvili, L., Stratis, I.G.: Representation formulae of general solutions in the theory of hemitropic elasticity. Q. J. Mech. Appl. Math. 59, 451–474 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chandraseker, K., Mukherjee, S., Paci, J.T., Schatz, G.C.: An atomistic-continuum Cosserat rod model of carbon nanotubes. J. Mech. Phys. Solids 57, 932–958 (2009)

    Article  Google Scholar 

  5. Ieşan, D.: Deformation of chiral elastic cylinders composed of two materials. Int. J. Solids Struct. 69–70, 207–216 (2015)

    Google Scholar 

  6. Ha, C.S., Plesha, M.E., Lakes, R.S.: Chiral three dimensional lattices with tunable Poissons ratio. Smart Mater. Struct. 25, 054005 (2016)

    Article  Google Scholar 

  7. Lakes, R.S., Yoon, H.S., Katz, J.L.: Slow compressional wave propagation in wet human and bovine cortical bone. Science 220, 513–515 (1983)

    Article  Google Scholar 

  8. Park, H.C., Lakes, R.S.: Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent. J. Biomech. 19, 385–397 (1986)

    Article  Google Scholar 

  9. Fatemi, J., van Keulen, F., Onuck, P.R.: Generalized continuum theories: application to stress analysis of bone. Meccanica 37, 385–396 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goda, I., Ganghoffer, J.F.: Identification of couple-stress moduli of vertebral trabecular bone based on the 3D internal architectures. J. Mech. Behav. Biomed. Mater. 51, 99–118 (2015)

    Article  Google Scholar 

  11. Cowin, S.C.: Bone Mechanics Handbook, 2nd edn. CRC Press, Boca Raton (2001)

    Google Scholar 

  12. Currey, J.D.: The Mechanical Adaptations of Bones. Princeton University Press, Princeton (2014)

    Google Scholar 

  13. Hanumantharaju, H.G., Shivanand, H.K.: Static analysis of bi-polar femur bone implant using FEA. Int. J. Recent Eng. 1, 118–121 (2009)

    Google Scholar 

  14. Cristofolini, L.: Stress models in biomechanics. In: Freddi, A., et al. (eds.) Experimental Stress Analysis for Materials and Structures, Springer Series in Solid and Structural Mechanics, vol. 4, pp. 425–448. Springer, Heidelberg (2015)

    Google Scholar 

  15. Eringen, A.C.: Microcontinuum Field Theories, I: Foundations and Solids. Springer, New York, Berlin, Heidelberg (1999)

    Book  MATH  Google Scholar 

  16. Dyszlewicz, J.: Micropolar Theory of Elasticity. Springer, Berlin, Heidelberg, New York (2004)

    Book  MATH  Google Scholar 

  17. Carlson, D.E.: Linear thermoelasticity. In: Truesdell, C. (ed.) Handbuch der Physik, vol. VIa/2. Springer, Berlin, Heidelberg, New York (1972)

    Google Scholar 

  18. Fichera, G.: Existence theorems in elasticity. In: Truesdell, C. (ed.) Handbuch der Physik, vol. VIa/2. Springer, Berlin, New York (1972)

    Google Scholar 

  19. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  20. Ciarletta, M., Ieşan, D.: Non-Classical Elastic Solids. Longman Scientific & Technical, Harlow (1993)

    MATH  Google Scholar 

  21. Ieşan, D.: Classical and Generalized Models of Elastic Rods. Chapman & Hall/CRC Press, London, New York, Boca Raton (2009)

    MATH  Google Scholar 

  22. Ieşan, D.: Thermal effects in chiral elastic rods. Int. J. Therm. Sci. 49, 1593–1599 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ieşan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ieşan, D. Thermoelastic deformation of reinforced chiral cylinders. Acta Mech 228, 3901–3922 (2017). https://doi.org/10.1007/s00707-017-1900-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1900-x

Navigation