Skip to main content
Log in

Effect of special rotational deformation on the dislocation emission from a branched crack tip in deformed nanocrystalline materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The problem of the special rotational deformation interacting with an internal crack is studied by developing a theoretical model of deformed nanocrystalline materials. Using the complex variable method of Muskhelishvili and the conformal mapping technique, the expressions of complex potentials and stress fields are obtained analytically. The stress intensity factors (SIFs) near the crack tips and the critical SIFs for the first lattice dislocation emission from the branched crack tip are calculated. The effects of important parameters such as grain size, the length of internal crack, and the angle between the main crack and its branched crack on the critical SIFs for dislocation emission are evaluated in detail. As a result, the special rotational deformation has great influence on the growth of internal crack and the emission of lattice dislocations from the branched crack tip. The disclination quadrupole produced by the special rotational deformation will shield the branched crack tip under a certain condition. Moreover, when the main crack approaches its branched crack, it will stop the emission of lattice dislocations from the branched crack tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuntz, J.D., Zhan, G.-D., Mukherjee, A.K.: Nanocrystalline-matrix ceramic composites for improved fracture toughness. MRS Bull. 29(01), 22–27 (2004). doi:10.1557/mrs2004.12

    Article  Google Scholar 

  2. Ovid’ko, I.: Deformation and diffusion modes in nanocrystalline materials. Int. Mater. Rev. 50(2), 65–82 (2005). doi:10.1179/174328005X14294

    Article  Google Scholar 

  3. Wolf, D., Yamakov, V., Phillpot, S., Mukherjee, A., Gleiter, H.: Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? Acta Mater. 53(1), 1–40 (2005). doi:10.1016/j.actamat.2004.08.045

    Article  Google Scholar 

  4. Dao, M., Lu, L., Asaro, R., De Hosson, J.T.M., Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55(12), 4041–4065 (2007). doi:10.1016/j.actamat.2007.01.038

    Article  Google Scholar 

  5. Mukhopadhyay, A., Basu, B.: Consolidation–microstructure–property relationships in bulk nanoceramics and ceramic nanocomposites: a review. Int. Mater. Rev. 52(5), 257–288 (2007). doi:10.1179/174328007X160281

    Article  Google Scholar 

  6. Barai, P., Weng, G.J.: Mechanics of creep resistance in nanocrystalline solids. Acta Mech. 195(1–4), 327–348 (2008). doi:10.1007/s00707-007-0558-1

    Article  MATH  Google Scholar 

  7. Barai, P., Weng, G.J.: The competition of grain size and porosity in the viscoplastic response of nanocrystalline solids. Int. J. Plast. 24(8), 1380–1410 (2008). doi:10.1016/j.ijplas.2007.09.010

    Article  MATH  Google Scholar 

  8. Gurtin, M.E., Anand, L.: Nanocrystalline grain boundaries that slip and separate: a gradient theory that accounts for grain-boundary stress and conditions at a triple-junction. J. Mech. Phys. Solids 56(1), 184–199 (2008). doi:10.1016/j.jmps.2007.09.001

    Article  MathSciNet  MATH  Google Scholar 

  9. Wei, Y., Bower, A.F., Gao, H.: Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding. Acta Mater. 56(8), 1741–1752 (2008). doi:10.1016/j.actamat.2007.12.028

    Article  Google Scholar 

  10. Morozov, N., Ovid’ko, I., Petrov, Y.V., Sheinerman, A.: Generation and converence of nanocracks in nanocrystalline materials deformed by grain boundary sliding. Rev. Adv. Mater. Sci. 19, 63–72 (2009)

    Google Scholar 

  11. Weng, G.J.: A homogenization scheme for the plastic properties of nanocrystalline materials. Rev. Adv. Mater. Sci. 19, 41–62 (2009)

    Google Scholar 

  12. Aifantis, E.: Deformation and failure of bulk nanograined and ultrafine-grained materials. Mater. Sci. Eng. A 503(1), 190–197 (2009). doi:10.1016/j.msea.2008.04.085

    Article  Google Scholar 

  13. Wu, M.: Analysis of dislocation wall formation in a disclinated nanograin. Int. J. Plast. 26(6), 794–805 (2010). doi:10.1016/j.ijplas.2009.10.007

    Article  MATH  Google Scholar 

  14. Yang, F., Yang, W.: Crack growth versus blunting in nanocrystalline metals with extremely small grain size. J. Mech. Phys. Solids 57(2), 305–324 (2009). doi:10.1016/j.jmps.2008.10.011

    Article  MathSciNet  MATH  Google Scholar 

  15. Figueiredo, R.B., Kawasaki, M., Langdon, T.G.: The mechanical properties of ultrafine-grained metals at elevated temperatures. Rev. Adv. Mater. Sci. 19(1/2), 1–12 (2009)

    Google Scholar 

  16. Guo, X., Weng, G., Soh, A.: Ductility enhancement of layered stainless steel with nanograined interface layers. Comput. Mater. Sci. 55, 350–355 (2012). doi:10.1016/j.commatsci.2011.11.014

    Article  Google Scholar 

  17. Pei, Y., Galvan, D., De Hosson, J.T.M.: Nanostructure and properties of TiC/aC: H composite coatings. Acta Mater. 53(17), 4505–4521 (2005). doi:10.1016/j.actamat.2005.05.045

    Article  Google Scholar 

  18. Kaminskii, A., Akchurin, M.S., Gainutdinov, R., Takaichi, K., Shirakava, A., Yagi, H., Yanagitani, T., Ueda, K.: Microhardness and fracture toughness of \(\text{ Y }_2\text{ O }_3\)-and \(\text{ Y }_3\text{ Al }_5\text{ O }_12\)-based nanocrystalline laser ceramics. Crystallogr. Rep. 50(5), 869–873 (2005). doi:10.1134/1.2049410

    Article  Google Scholar 

  19. Bobylev, S., Morozov, N., Ovid’ko, I.: Cooperative grain boundary sliding and nanograin nucleation process in nanocrystalline, ultrafine-grained, and polycrystalline solids. Phys. Rev. B Condens. Matter 84(9), 094103 (2011). doi:10.1103/PhysRevB.84.094103

    Article  Google Scholar 

  20. Juan, P.-A., Berbenni, S., Capolungo, L.: Prediction of internal stresses during growth of first-and second-generation twins in Mg and Mg alloys. Acta Mater. 60(2), 476–486 (2012). doi:10.1016/j.actamat.2011.10.018

    Article  Google Scholar 

  21. Morozov, N., Ovid’ko, I., Sheinerman, A., Aifantis, E.: Special rotational deformation as a toughening mechanism in nanocrystalline solids. J. Mech. Phys. Solids 58(8), 1088–1099 (2010). doi:10.1016/j.jmps.2010.04.003

    Article  Google Scholar 

  22. Ovid’ko, I., Sheinerman, A.: Nanoscale rotational deformation in solids at high stresses. Appl. Phys. Lett. 98(18), 181909 (2011). doi:10.1063/1.3587637

    Article  Google Scholar 

  23. Mukherjee, A.K.: An examination of the constitutive equation for elevated temperature plasticity. Mater. Sci. Eng. A 322(1), 1–22 (2002). doi:10.1016/S0921-5093(01)01115-7

    Article  MathSciNet  Google Scholar 

  24. Murayama, M., Howe, J., Hidaka, H., Takaki, S.: Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe. Science 295(5564), 2433–2435 (2002). doi:10.1126/science.1067430

    Article  Google Scholar 

  25. Zizak, I., Darowski, N., Klaumünzer, S., Schumacher, G., Gerlach, J.W., Assmann, W.: Ion-beam-induced collective rotation of nanocrystals. Phys. Rev. Lett. 101(6), 065503 (2008). doi:10.1103/PhysRevLett.101.065503

    Article  Google Scholar 

  26. Shan, Z., Stach, E., Wiezorek, J., Knapp, J., Follstaedt, D., Mao, S.: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305(5684), 654–657 (2004). doi:10.1126/science.1098741

    Article  Google Scholar 

  27. Szlufarska, I., Nakano, A., Vashishta, P.: A crossover in the mechanical response of nanocrystalline ceramics. Science 309(5736), 911–914 (2005). doi:10.1126/science.1114411

    Article  Google Scholar 

  28. Shimokawa, T., Nakatani, A., Kitagawa, H.: Grain-size dependence of the relationship between intergranular and intragranular deformation of nanocrystalline Al by molecular dynamics simulations. Phys. Rev. B Condens. Matter 71(22), 224110 (2005). doi:10.1103/PhysRevB.71.224110

    Article  Google Scholar 

  29. Latapie, A., Farkas, D.: Molecular dynamics investigation of the fracture behavior of nanocrystalline \(\alpha \)-Fe. Phys. Rev. B Condens. Matter 69(13), 134110 (2004). doi:10.1103/PhysRevB.69.134110

    Article  Google Scholar 

  30. Bobylev, S., Mukherjee, A., Ovid’ko, I.: Transition from plastic shear into rotation deformation mode in nanocrystalline metals and ceramics. Rev. Adv. Mater. Sci. 19, 103–113 (2009)

    Google Scholar 

  31. Ovid’ko, I., Sheinerman, A.: Special rotational deformation in nanocrystalline metals and ceramics. Scr. Mater. 59(1), 119–122 (2008). doi:10.1016/j.scriptamat.2008.02.047

    Article  Google Scholar 

  32. Joshi, S.P., Ramesh, K.: Stability map for nanocrystalline and amorphous materials. Phys. Rev. Lett. 101(2), 025501 (2008). doi:10.1103/PhysRevLett.101.025501

    Article  Google Scholar 

  33. Liu, Y., Zhou, J., Wang, L., Zhang, S., Wang, Y.: Grain size dependent fracture toughness of nanocrystalline materials. Mater. Sci. Eng. A 528(13), 4615–4619 (2011). doi:10.1016/j.msea.2011.02.056

    Article  Google Scholar 

  34. Liu, Y., Zhou, J., Shen, T., Hui, D.: Grain rotation dependent fracture toughness of nanocrystalline materials. Mater. Sci. Eng. A 528(25), 7684–7687 (2011). doi:10.1016/j.msea.2011.06.035

    Article  Google Scholar 

  35. Feng, H., Fang, Q., Liu, Y., Chen, C.: Nanoscale rotational deformation effect on dislocation emission from an elliptically blunted crack tip in nanocrystalline materials. Int. J. Solids Struct. 51(2), 352–358 (2014). doi:10.1016/j.ijsolstr.2013.10.008

    Article  Google Scholar 

  36. Feng, H., Fang, Q.H., Zhang, L.C., Liu, Y.W.: Special rotational deformation and grain size effect on fracture toughness of nanocrystalline materials. Int. J. Plast. 42(4), 50–64 (2013). doi:10.1016/j.ijplas.2012.09.015

    Article  Google Scholar 

  37. Fang, Q., Feng, H., Liu, Y., Lin, S., Zhang, N.: Special rotational deformation effect on the emission of dislocations from a crack tip in deformed nanocrystalline solids. Int. J. Solids Struct. 49(11), 1406–1412 (2012). doi:10.1016/j.ijsolstr.2012.02.026

    Article  Google Scholar 

  38. Yu, M., Fang, Q., Feng, H., Liu, Y.: Effect of special rotational deformation on dislocation emission from interface collinear crack tip in nanocrystalline bi-materials. Acta Mech. (2016). doi:10.1007/s00707-016-1604-7

    MathSciNet  MATH  Google Scholar 

  39. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity, vol. 1. Springer, Berlin (1977)

    Book  Google Scholar 

  40. Sih, G.: Stress distribution near internal crack tips for longitudinal shear problems. J. Appl. Mech. 32(1), 51–58 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  41. Romanov, A., Vladimirov, V.: Disclinations in crystalline solids. In: Nabarro, F.R.N. (ed.) Dislocations in Solids, vol. 9. North-Holland, Amsterdam (1992)

    Google Scholar 

  42. Zhang, T.-Y., Tong, P., Ouyang, H., Lee, S.: Interaction of an edge dislocation with a wedge crack. J. Appl. Phys. 78(8), 4873 (1995). doi:10.1063/1.359775

    Article  Google Scholar 

  43. Hao-Peng, S., Qi-Hong, F., You-Wen, L.: Elastic behaviour of a wedge disclination dipole near a sharp crack emanating from a semi-elliptical blunt crack. Chin. Phys. B 19(5), 056102 (2010). doi:10.1088/1674-1056/19/5/056102

    Article  Google Scholar 

  44. Fang, Q., Liu, Y.: Size-dependent interaction between an edge dislocation and a nanoscale inhomogeneity with interface effects. Acta Mater. 54(16), 4213–4220 (2006). doi:10.1016/j.actamat.2006.05.012

    Article  Google Scholar 

  45. Fang, Q., Liu, Y., Jin, B., Wen, P.: Effect of interface stresses on the image force and stability of an edge dislocation inside a nanoscale cylindrical inclusion. Int. J. Solids Struct. 46(6), 1413–1422 (2009). doi:10.1016/j.ijsolstr.2008.11.013

    Article  MATH  Google Scholar 

  46. Hirth, J.P., Lothe, J.: Theory of Dislocations. Wiley, New York (1982)

    Google Scholar 

  47. Neuber, H.: Theory of Notch Stresses. JW Edwards, Ann Arbor (1946)

    MATH  Google Scholar 

  48. Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. SPIE Milest. Ser. MS 137, 167–170 (1997)

    Google Scholar 

  49. Rice, J.R., Thomson, R.: Ductile versus brittle behaviour of crystals. Philos. Mag. 29(1), 73–97 (1974). doi:10.1080/14786437408213555

    Article  Google Scholar 

  50. Huang, M., Li, Z.: Dislocation emission criterion from a blunt crack tip. J. Mech. Phys. Solids 52(9), 1991–2003 (2004). doi:10.1016/j.jmps.2004.03.003

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanshen Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Xiao, W., Zhang, Y. et al. Effect of special rotational deformation on the dislocation emission from a branched crack tip in deformed nanocrystalline materials. Acta Mech 228, 823–836 (2017). https://doi.org/10.1007/s00707-016-1742-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1742-y

Navigation