Skip to main content
Log in

Global investigation of the nonlinear dynamics of carbon nanotubes

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Understanding the complex nonlinear dynamics of carbon nanotubes (CNTs) is essential to enable utilization of these structures in devices and practical applications. We present in this work an investigation of the global nonlinear dynamics of a slacked CNT when actuated by large electrostatic and electrodynamic excitations. The coexistence of several attractors is observed. The CNT is modeled as an Euler–Bernoulli beam. A reduced-order model based on the Galerkin method is developed and utilized to simulate the static and dynamic responses. Critical computational challenges are posed due to the complicated form of the electrostatic force, which describes the interaction between the upper electrode, consisting of the cylindrically shaped CNT, and the lower electrode. Toward this, we approximate the electrostatic force using the Padé expansion. We explore the dynamics near the primary and superharmonic resonances. The nanostructure exhibits several attractors with different characteristics. To achieve deep insight and describe the complexity and richness of the behavior, we analyze the nonlinear response from an attractor-basins point of view. The competition of attractors is highlighted. Compactness and/or fractality of their basins are discussed. Both the effects of varying the excitation frequency and amplitude are examined up to the dynamic pull-in instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris, P.J.F.: Carbon Nanotubes and Related Structures. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  2. Pelesko, J.A., Bernstein, D.H.: Modeling MEMS and NEMS. Chapman & Hall/CRC Press, London (2003)

    MATH  Google Scholar 

  3. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, Berlin (2011)

    Book  Google Scholar 

  4. Fennimore, A.M., Yuzvinsky, T.D., Han, W.Q., Fuhrer, M.S., Cumings, J., Zettl, A.: Rotational actuators based on carbon nanotubes. Nature 424(6947), 408–410 (2003)

    Article  Google Scholar 

  5. Westra, H.J.R., Poot, M., van der Zant, H.S.J., Venstra, W.J.: Nonlinear modal interactions in clamped-clamped mechanical resonators. Phys. Rev. Lett. 105, 117205 (2010)

    Article  Google Scholar 

  6. Mahboob, I., Wilmart, Q., Nishiguchi, K., Fujiwara, A., Yamaguchi, H.: Wide-band idler generation in a GaAs electromechanical resonator. Phys. Rev. B 84, 113411 (2011)

    Article  Google Scholar 

  7. Venstra, W.J., Westra, H.J.R., van der Zant, H.S.J.: Q-factor control of a microcantilever by mechanical sideband excitation. Appl. Phys. Lett. 99, 151904 (2011)

    Article  Google Scholar 

  8. Moser, J., Güttinger, J., Eichler, A., Esplandiu, M.J., Liu, D.E., Dykman, M.I., Bachtold, A.: Ultrasensitive force detection with a nanotube mechanical resonator. Nat. Nanotechnol. 8, 493–496 (2013)

    Article  Google Scholar 

  9. Chaste, J., Eichler, A., Moser, J., Ceballos, G., Rurali, R., Bachtold, A.: A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7, 301–304 (2012)

    Article  Google Scholar 

  10. Poncharal, P., Wang, Z.L., Ugarte, D., de Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    Article  Google Scholar 

  11. Huttel, A.K., Steele, G.A., Witkamp, B., Poot, M., Kouwenhoven, L.P., van der Zant, H.S.J.: Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 9, 2547–2552 (2009)

    Article  Google Scholar 

  12. Laird, E.A., Pei, F., Tang, W., Steele, G.A., Kouwenhoven, L.P.: A high quality factor carbon nanotube mechanical resonator at 39 GHz. Nano Lett. 12, 193 (2011)

    Article  Google Scholar 

  13. Gibson, R.F., Ayorinde, E.O., Wen, Y.F.: Vibrations of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 67, 1–28 (2008)

    Article  Google Scholar 

  14. Stowe, T.D., Yasumura, K., Kenny, T.W., Botkin, D., Wago, K., Rugar, D.: Attonewton force detection using ultrathin silicon cantilevers. Appl. Phys. Lett. 71(2), 288–290 (1997)

    Article  Google Scholar 

  15. Karabalin, R.B., Lifshitz, R., Cross, M.C., Matheny, M.H., Masmanidis, S.C., Roukes, M.L.: Signal amplification by sensitive control of bifurcation topology. Phys. Rev. Lett. 106(9), 094102 (2011)

    Article  Google Scholar 

  16. Faust, T., Rieger, J., Seitner, M.J., Krenn, P., Kotthaus, J.P., Weig, E.M.: Non-adiabatic dynamics of two strongly coupled nanomechanical resonator modes. Phys. Rev. Lett. 109, 037205 (2013)

    Article  Google Scholar 

  17. Antoni, T., Makles, K., Braive, R., Briant, T., Cohadon, P.-F., Sagnes, I., Robert-Philip, I., Heidmann, A.: Nonlinear mechanics with photonic crystal nanomembranes. Europhys. Lett. 100, 68005 (2012)

    Article  Google Scholar 

  18. Caruntu, D.I., Luo, L.: Frequency response of primary resonance of electrostatically actuated CNT cantilevers. Nonlinear Dyn. 78, 1827–1837 (2014)

    Article  Google Scholar 

  19. Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro- and nanoresonators. J. Dyn. Syst. Meas. Control 132(3), 034001 (2010)

    Article  Google Scholar 

  20. Harne, R., Wang, K.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013)

    Article  Google Scholar 

  21. Turner, K., Burgner, C., Yie, Z., Holtoff, E.: Using nonlinearity to enhance micro/nanosensor performance. In: Sensors, 2012 IEEE, pp. 1–4 (2012). doi:10.1109/ICSENS.2012.6411564

  22. Ya’akobovitz, A., Bar-Dea, L., Hanein, Y., Krylov, S.: Three-dimensional dynamic behavior of suspended single wall carbon nanotubes. Int. J. Mech. Sci. 105, 369–377 (2016)

    Article  Google Scholar 

  23. Karabalin, R.B., Cross, M.C., Roukes, M.L.: Nonlinear dynamics and chaos in two coupled nanomechanical resonators. Phys. Rev. B 79, 165309 (2009)

    Article  Google Scholar 

  24. Kacem, N., Baguet, S., Duraffourg, L., Jourdan, G., Dufour, R., Hentz, S.: Overcoming limitations of nanomechanical resonators with simultaneous resonances. Appl. Phys. Lett. 107, 073105 (2015)

    Article  Google Scholar 

  25. Nguyen, V.-N., Baguet, S., Lamarque, C.-H., Dufour, R.: Bifurcation-based micro/nanoelectromechanical mass detection. Nonlinear Dyn. 79, 647–662 (2015)

    Article  Google Scholar 

  26. Eichler, A., Moser, J., Chaste, J., Zdrojek, M., Bachtold, A.: Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotechnol. 6, 339–342 (2011)

    Article  Google Scholar 

  27. Kozinsky, I., Postma, H.W.C., Kogan, O., Husain, A., Roukes, M.L.: Basins of attraction of a nonlinear nanomechanical resonator. Phys. Rev. Lett. 99, 8–11 (2007)

    Article  Google Scholar 

  28. Cho, H., Jeong, B., Yu, M.F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Nonlinear hardening and softening resonances in micromechanical cantilever-nanotube systems originated from nanoscale geometric nonlinearities. Int. J. Solids Struct. 49(15), 2059–2065 (2012)

    Article  Google Scholar 

  29. Sazonova, V., Yaish, Y., Ustunel, H., Roundy, D., Arias, T.A., McEuen, P.L.: A tunable carbon nanotubes electromechanical oscillator. Nature 431(7006), 284–287 (2004)

    Article  Google Scholar 

  30. Ouakad, H., Younis, M.I.: Natural frequencies and mode shapes of initially curved carbon nanotube resonators under electric excitation. J. Sound Vib. 330, 3182–3195 (2011)

    Article  Google Scholar 

  31. Ouakad, H., Younis, M.I.: Dynamic response of slacked carbon nanotube resonators. Nonlinear Dyn. 67(2), 1419–1436 (2012)

    Article  MathSciNet  Google Scholar 

  32. Ruzziconi, L., Younis, M.I., Lenci, S.: Multistability in an electrically actuated carbon nanotube: a dynamical integrity perspective. Nonlinear Dyn. 74(3), 533–549 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, T., Younis, M.I.: Nonlinear dynamics of carbon nanotubes under large electrostatic force. ASME J. Comput. Nonlinear Dyn. 11(2), 021009 (2015)

    Article  Google Scholar 

  34. Mettler, E.: Dynamic buckling. In: Flügge, W. (ed.) Handbook of Engineering Mechanics, pp. 62-1–62-11. McGraw Hill, New York (1962)

    Google Scholar 

  35. Crespo da Silva, M.R.M.: Vibrations of shallow arches including the effect of geometric nonlinearities. J. Sound Vib. 84(2), 161–172 (1982)

  36. Humphreys, J.: On dynamic snap buckling of shallow arches. AIAA J. 4(5), 878–886 (1966)

    Article  Google Scholar 

  37. Rega, G., Lenci, S., Thompson, J.M.T.: Controlling chaos: The OGY method, its use in mechanics, and an alternative unified framework for control of non-regular dynamics. In: Thiel, M., et al. (eds.) Nonlinear Dynamics and Chaos: Advances and Perspectives, pp. 211–270. Springer, Berlin (2010)

    Chapter  Google Scholar 

  38. Krylov, S., Ilic, B.R., Schreiber, D., Seretensky, S., Craighead, H.: The pull-in behavior of electrostatically actuated bistable microbeams. J. Micromech. Microeng. 18, 055026 (2008)

    Article  Google Scholar 

  39. Ruzziconi, L., Lenci, S., Younis, M.I.: An imperfect microbeam under an axial load and electric excitation: nonlinear phenomena and dynamical integrity. Int. J. Bifurc. Chaos 23, 1350026 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Medina, L., Gilat, R., Ilic, B., Krylov, S.: Experimental investigation of the snap-through buckling of electrostatically actuated initially curved pre-stressed micro beams. Sens. Actuators A 220, 323–332 (2014)

    Article  Google Scholar 

  41. Hafiz, M.A.A., Kosuru, L., Younis, M.I.: Microelectromechanical reprogrammable logic device. Nat. Commun. 7, 11137 (2016). doi:10.1038/ncomms11137

    Article  Google Scholar 

  42. Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.H.: A reduced-order model for electrically actuated microbeam-based MEMS. J. Microelectromech. Syst. 12(5), 672–680 (2003)

    Article  Google Scholar 

  43. Ruzziconi, L., Bataineh, A.M., Younis, M.I., Cui, W., Lenci, S.: Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: experimental investigation and reduced-order modeling. J. Micromech. Microeng. 23, 075012 (2013)

    Article  Google Scholar 

  44. Ruzziconi, L., Younis, M.I., Lenci, S.: An efficient reduced-order model to investigate the behavior of an imperfect microbeam under axial load and electric excitation. ASME J. Comput. Nonlinear Dyn. 8, 011014 (2013)

    Article  MATH  Google Scholar 

  45. Nusse, H.E., Yorke, J.A.: Dynamics: Numerical Explorations. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  46. Thompson, J.M.T.: Chaotic phenomena triggering the escape from a potential well. Proc. R. Soc. Lond. Ser. A 421, 195–225 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  47. Settimi, V., Rega, G.: Exploiting global dynamics of a noncontact atomic force microcantilever to enhance its dynamical robustness via numerical control. Int. J. Bifurc. Chaos 26(07), 1630018 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ruzziconi, L., Younis, M.I., Lenci, S.: An electrically actuated imperfect microbeam: dynamical integrity for interpreting and predicting the device response. Meccanica 48(7), 1761–1775 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad I. Younis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Ruzziconi, L. & Younis, M.I. Global investigation of the nonlinear dynamics of carbon nanotubes. Acta Mech 228, 1029–1043 (2017). https://doi.org/10.1007/s00707-016-1740-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1740-0

Navigation