Skip to main content
Log in

Penny-shaped crack in elastic medium with surface energy effects

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, a penny-shaped crack in an infinite elastic medium subjected to vertical pressure loading at the crack surface under the influence of surface stress is considered. The Gurtin–Murdoch continuum theory of elastic material surfaces is adopted, and the Hankel integral transform is employed to solve this axisymmetric boundary value problem. A set of simultaneous dual integral equations is solved by employing an appropriate numerical solution scheme. Selected numerical results are presented to portray the influence of the surface stress on the elastic field. Numerical results reveal that the surface stress has a significant influence on both stress and displacement fields. It is also found that the material becomes tougher with the presence of surface stress. In addition, the elastic field also shows size-dependent behavior deviating from the classical crack solution. The solutions presented in this study provide fundamental understanding of the influence of surface stress on fracture mechanics problems. It can also be used as a benchmark solution for the development of numerical techniques, such as FEM and BEM, for analysis of more complicated problems associated with cracks under the influence of surface stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yakobson, B.I.: Handbook of nanoscience, engineering and technology. In: Goddard, W.A., Brenner, D.W., Lyshevsk, S.E., Iafrate, G.J. (eds.) Nanomechanics. CRC Press, Boca Raton (2003)

    Google Scholar 

  2. Huang, Z.P., Wang, J.: A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech. 182, 195–210 (2006)

    Article  MATH  Google Scholar 

  3. Wong, E., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  4. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Rat. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  6. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  7. Tian, L., Rajapakse, R.K.N.D.: Analytical solution for size-dependent elastic field of a nanoscale circular inhomogeneity. ASME J Appl. Mech. 74, 568–574 (2007)

    Article  MATH  Google Scholar 

  8. Zhao, X.J., Rajapakse, R.K.N.D.: Analytical solutions for a surface-loaded isotropic elastic layer with surface energy effects. Int. J. Eng. Sci. 47, 1433–1444 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Intarit, P., Senjuntichai, T., Rajapakse, R.K.N.D.: Dislocations and internal loading in a semi-infinite elastic medium with surface stresses. Eng. Fract. Mech. 77, 3592–3603 (2010)

    Article  Google Scholar 

  10. Abdel Rahman, A.A., Mahmoud, F.F.: Analysis of nanocontact problems of layered viscoelastic solids with surface energy effects under different loading patterns. Acta Mech. 227, 527–548 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhao, X.J., Rajapakse, R.: Elatic field of a nano-film subjected to tangential surface load: asymmetric problem. Eur. J. Mech.-A (Solids) 39, 69–75 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhao, X.J.: Surface loading and rigid indentation of an elastic layer with surface energy effects. Master Thesis, University of British Columbia (2009)

  13. Wang, Z.Q., Zhao, Y.P., Huang, Z.P.: The effects of surface tension on the elastic properties of nano structures. Int. J. Eng. Sci. 48, 140–150 (2010)

    Article  Google Scholar 

  14. Intarit, P., Senjuntichai, T., Rungamornrat, J., Rajapakse, R.K.N.D.: Surface elasticity and residual stress effect on the elastic field of a nanoscale elastic layer. Inter. Multi. Mech. 4, 85–105 (2011)

    Article  Google Scholar 

  15. Rungamornrat, J., Tuttipongsawat, P., Senjuntichai, T.: Elastic layer under axisymmetric surface loads and influence of surface stresses. Appl. Math. Model. 40, 1532–1553 (2016)

    Article  MathSciNet  Google Scholar 

  16. Pinyochotiwong, Y., Rungamornrat, J., Senjuntichai, T.: Rigid frictionless indentation on elastic half space with influence of surface stresses. Int. J. Eng. Sci. 71, 15–35 (2013)

    Article  MathSciNet  Google Scholar 

  17. He, L.H., Lim, C.W.: Surface Green functions for a soft elastic half-space: influence of surface stress. Int. J. Solids Struct. 43, 132–143 (2006)

    Article  MATH  Google Scholar 

  18. Wu, C.H.: The effect of surface stress on the configurational equilibrium of voids and cracks. J. Mech. Phys. Solids. 47, 2469–2402 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu, C.H., Wang, M.L.: The effect of crack-tip point loads on fracture. J. Mech. Phys. Solids. 48, 2283–2296 (2000)

    Article  MATH  Google Scholar 

  20. Wu, C.H., Wang, M.L.: Configurational equilibrium of circular-arc cracks with surface stress. Int. J. Solids Struct. 38, 4279–4292 (2001)

    Article  MATH  Google Scholar 

  21. Wang, G.F., Feng, X.Q., Wang, T.J., Gao, W.: Surface effects on the near-tip stresses for Mode-I and Mode-III cracks. ASME J. Appl. Mech. 75, 1–5 (2008)

    Google Scholar 

  22. Fu, X.L., Wang, G.F., Feng, X.Q.: Surface effects on the near-tip stress fields of a mode-II crack. Int. J. Fract. 151, 95–106 (2008)

    Article  MATH  Google Scholar 

  23. Kim, C.I., Schiavone, P., Ru, C.Q.: The effects of surface elasticity on an elastic solid with mode-III crack: complete solution. ASME J. Appl. Mech. 77, 1–7 (2010)

    Google Scholar 

  24. Kim, C.I., Schiavone, P., Ru, C.Q.: Analysis of plane-strain crack problems (Mode-I & Mode-II) in the presence of surface elasticity. J. Elast. 104, 397–420 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sneddon, I.N.: The distribution of stress in the neighborhood of a crack in an elastic solid. Proc. R. Soc. (Lond.) A187, 226–260 (1946)

    Google Scholar 

  26. Florence, A.L., Goodier, J.N.: The liner thermoelastic problem of uniform heat flow distributed by a penny-shaped insulated crack. Int. J. Eng. Sci. 1, 533–540 (1963)

    Article  Google Scholar 

  27. He, M.Y., Hutchinson, J.W.: The penny-shaped crack and the plane strain crack in an infinite body of power-law material. ASME J. Appl. Mech. 48, 830–840 (1981)

    Article  MATH  Google Scholar 

  28. Fabrikant, V.I.: Inverse crack problem in elasticity. Acta Mech. 61, 29–36 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nguyen, T.B., Rungamornrat, J., Senjuntichai, T., Wijeyewickema, A.C.: FEM-SGBEM coupling for modeling of mode-I planar cracks in three-dimensional elastic media with residual surface tension effects. Eng. Anal. Bound. Elem. 55, 40–51 (2015)

    Article  MathSciNet  Google Scholar 

  30. Sneddon, I.N.: Fourier Transforms. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  31. Erdogan, F., Bahar, L.Y.: On the solution of simultaneous dual integral equations. J. Soc. Ind. Appl. Math. 12, 666–675 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  32. Magnus, W., Oberhettinger, F.: Formulas and Theorems for the Functions of Mathematical Physics. Chelsea, New York (1954)

    MATH  Google Scholar 

  33. Tranter, C.J.: Integral Transforms in Mathematical Physics. Wiley, New York (1951)

    MATH  Google Scholar 

  34. Piessens, R., Doncker-Kapenga, E., Uberhuber, C.W., Kahaner, D.K.: QUADPACK: A Subroutine Package for Automatic Integration. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  35. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B. 71, 094104 (2005)

    Article  Google Scholar 

  36. Dingreville, R., Qu, J.: A semi-analytical method to compute surface elastic properties. Acta Mater. 55, 141–147 (2007)

    Article  Google Scholar 

  37. Fabrikant, V.I.: Applications of Potential Theory in Mechanics: A Selections of New Results. Kluwer Academic, Dordrecht (1989)

    MATH  Google Scholar 

  38. Sendova, T., Walton, J.R.: A new approach to the modeling and analysis of fracture through extension of continuum mechanics to the nanoscale. Math. Mech. Solids 15(3), 368–413 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Walton, J.R.: A note on fracture models incorporating surface elasticity. J. Elast. 109(1), 95–102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kim, C.I., Ru, C.Q., Schiavone, P.: A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Math. Mech. Solids 18(1), 59–66 (2013)

    Article  MathSciNet  Google Scholar 

  41. Walton, J.R.: Plane-strain fracture with curvature-dependent surface tension: Mixed-mode loading. J. Elast. 114(1), 127–142 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ferguson, L.A., Muddamallappa, M., Walton, J.R.: Numerical simulation of mode-III fracture incorporating interacial mechanics. Int. J. Fract. 192(1), 47–56 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Senjuntichai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Intarit, P., Senjuntichai, T., Rungamornrat, J. et al. Penny-shaped crack in elastic medium with surface energy effects. Acta Mech 228, 617–630 (2017). https://doi.org/10.1007/s00707-016-1728-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1728-9

Navigation