Skip to main content
Log in

Strip yield zone of a penny-shaped crack in a magnetoelectroelastic material under axisymmetric loadings

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The strip yield zone ahead of a penny-shaped crack in a magnetoelectroelastic material, subjected to electric, magnetic and axisymmetric mechanical loadings, is evaluated analytically. Hankel transform is employed to reduce the mixed boundary value problem of the penny-shaped crack to dual integral equations, which are solved exactly under the assumption of electrically and magnetically permeable crack face conditions and the plastic strip yield zone crack model. An analytic solution to the mixed boundary problem has been obtained to predict the relationship between the length of the strip yield zone and the applied loadings. The distribution of mechanical, electric and magnetic fields in and outside of the strip yield zone in the cracked magnetoelectroelastic material has been derived analytically, and the crack opening displacement has been investigated. The effects of the mechanical, electric and magnetic loadings on the size of the yield zone are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, K.Q., Li, G.Q.: Constant moving crack in a magnetoelectroelastic material under anti-plane shear loading. Int. J. Solids Struct. 42, 2823–2835 (2005)

    Article  MATH  Google Scholar 

  2. Gao, C.F., Hannes, K., Herbert, B.: Crack problems in magnetoelectroelastic solids. Part I: exact solution of a crack. Int. J. Eng. Sci. 41, 969–981 (2003)

    Article  MATH  Google Scholar 

  3. Qin, Q.H.: 2D Green’s functions of defective magnetoelectroelastic solids under thermal loading. Eng. Anal. Bound. Elem. 29, 577–585 (2005)

    Article  MATH  Google Scholar 

  4. Hu, K.Q., Li, G.Q.: Electro-magneto-elastic analysis of piezoelectromagnetic strip with a finite crack under longitudinal shear. Mech. Mater. 37, 925–934 (2005)

    Article  Google Scholar 

  5. Li, X.F.: Dynamic analysis of a cracked magnetoelectroelastic medium under antiplane mechanical and inplane electric and magnetic impacts. Int. J. Solids Struct. 42, 3185–3205 (2005)

    Article  MATH  Google Scholar 

  6. Feng, W.J., Pan, E., Wang, X.: Dynamic fracture analysis of a penny-shaped crack in a magnetoelectroelastic layer. Int. J. Solids Struct. 44, 7955–7974 (2007)

    Article  MATH  Google Scholar 

  7. Rojas-Díaz, R., Garcia-Sanchez, F., Saez, A., Zhang, C.: Fracture analysis of magnetoelectroelastic composite materials. Key Eng. Mater. Adv. Fract. Damage Mech. VI 348–349, 69–72 (2007)

    Google Scholar 

  8. Wang, B.-L., Mai, Y.-W.: Applicability of crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials. Int. J. Solids Struct. 44, 387–398 (2007)

    Article  MATH  Google Scholar 

  9. Zhong, X.C., Li, X.F.: Fracture analysis of a magnetoelectroelastic solid with a penny-shaped crack by considering the effects of the opening crack interior. Int. J. Eng. Sci. 46, 374–390 (2008)

    Article  MATH  Google Scholar 

  10. Zhou, Z.G., Chen, Z.T.: Fracture mechanics analysis of a partially conducting mode I crack in piezoelectromagnetic materials. Eur. J. Mech. A/Solids 27, 824–846 (2008)

    Article  MathSciNet  Google Scholar 

  11. Ma, C.-C., Lee, J.-M.: Theoretical analysis of generalized loadings and image forces in a planar magnetoelectroelastic layered half-plane. J. Mech. Phys. Solids 57, 598–620 (2009)

    Article  MATH  Google Scholar 

  12. Li, Y.D., Lee, K.Y.: Collinear unequal crack series in magnetoelectroelastic materials: Mode I case solved via new real fundamental solutions. Eng. Fract. Mech. 77, 2772–2790 (2010)

    Article  Google Scholar 

  13. Li, G., Wang, B.-L., Han, J.-C.: Exact solution for elliptical inclusion in magnetoelectroelastic materials. Int. J. Solids Struct. 47, 419–426 (2010)

    Article  MATH  Google Scholar 

  14. Rekik, M., El-Borgi, S., Ounaies, Z.: An embedded mixed-mode crack in a functionally graded magnetoelectroelastic infinite medium. Int. J. Solids Struct. 49, 835–845 (2012)

    Article  Google Scholar 

  15. Wan, Y.P., Yue, Y.P., Zhong, Z.: A mode III crack crossing the magnetoelectroelastic biomaterial interface under concentrated magnetoelectromechanical loads. Int. J. Solids Struct. 49, 3008–3021 (2012)

    Article  Google Scholar 

  16. Hu, K.Q., Chen, Z.T.: Pre-curving analysis of an opening crack in a magnetoelectroelastic strip under in-plane impact loadings. J. Appl. Phys. 112, 124911 (2012)

    Article  Google Scholar 

  17. Hu, K.Q., Chen, Z.T.: Pre-kinking of a moving crack in a magnetoelectroelastic material under in-plane loading. Int. J. Solids Struct. 50, 2667–2677 (2013)

    Article  Google Scholar 

  18. Liu, L.L., Feng, W.J., Ma, P.: A penny-shaped magnetically dielectric crack in a magnetoelectroelastic cylinder under magnetoelectromechanical loads. ZAMMZ. Angew. Math. Mech. 96, 179–190 (2016)

  19. Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1961)

    Article  Google Scholar 

  20. Fan, T.Y.: Moving Dugdale model. ZAMP 38, 630–641 (1987)

    Article  MATH  Google Scholar 

  21. Hoh, H.J., Xiao, Z.M., Luo, J.: On the plastic zone size and crack tip opening displacement of a Dugdale crack interacting with a circular inclusion. Acta Mech. 210, 305–314 (2010)

    Article  MATH  Google Scholar 

  22. Fan, M., Xiao, Z.M., Luo, J.: On the plastic zone correction of a Zener–Stroh crack interacting with a nearby inhomogeneity and an edge dislocation. Acta Mech. 226, 4173–4188 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gao, H., Zhang, T.-Y., Tong, P.: Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramics. J. Mech. Phys. Solids 45, 491–509 (1997)

    Article  Google Scholar 

  24. Narita, F., Shindo, Y.: Mode I crack growth rate for yield strip model of a narrow piezoelectric ceramic body. Theor. Appl. Fract. Mech. 36, 73–85 (2001)

    Article  Google Scholar 

  25. Zhang, T.Y., Zhao, M.H., Gao, C.F.: The strip dielectric breakdown model. Int. J. Fract. 132, 311–327 (2005)

    Article  MATH  Google Scholar 

  26. Zhao, M.-H., Fan, C.-Y.: Strip electric-magnetic breakdown model in magnetoelectro-elastic medium. J. Mech. Phys. Solids 56, 3441–3458 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hu, K.Q., Chen, Z.T.: Dugdale plastic zone of a penny-shaped crack in a piezoelectric material under axisymmetric loading. Acta Mech. (2015). doi:10.1007/s00707-015-1501-5

  28. Karch, J., Birringer, R., Gleiter, H.: Ceramics ductile at low temperature. Nature 330, 556–558 (1987)

    Article  Google Scholar 

  29. Arturo, D.-R., Diego, G.-G., Eugenio, Z.-S., James, Z.S., Rachman, C.: Making ceramics ductile at low temperatures. Scripta Mater. 56, 89–91 (2007)

    Article  Google Scholar 

  30. Capsal, J.-F., Dantras, E., Laffont, L., Lacabanne, C.: Nanotexture influence of BaTiO3 particles on piezoelectric behaviour of PA 11/BaTiO3 nanocomposites. J. Non-Crystall. Solids 356, 629–34 (2010)

    Article  Google Scholar 

  31. Daga, A., Ganesan, N., Shanker, K.: Harmonic response of three-phase magneto-electro-elastic beam under mechanical, electrical and magnetic environment. J. Intell. Mater. Syst. Struct. 20, 1203–1220 (2009)

    Article  Google Scholar 

  32. Li, X.F.: Electroelastic analysis of an anti-plane shear crack in a piezoelectric ceramic strip. Int. J. Solids Struct. 39, 1097–1117 (2002)

    Article  MATH  Google Scholar 

  33. Li, S.: On global energy release rate of a permeable crack in piezoelectric ceramic. J. Appl. Mech. 70, 246–252 (2003)

    Article  MATH  Google Scholar 

  34. Hu, K.Q., Chen, Z.T., Zhong, Z.: Pre-kinking analysis of a constant moving crack in a magnetoelectroelastic strip under in-plane loading. Eur. J. Mech. A/Solids 43, 25–43 (2014)

    Article  MathSciNet  Google Scholar 

  35. Stroh, A.N.: Steady state problems in anisotropic elasticity. J. Math. Phys. 41, 77–103 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day, Inc., San Francisco (1963)

    MATH  Google Scholar 

  37. Chiang, C.-R., Weng, G.J.: Nonlinear behavior and critical state of a penny-shaped dielectric crack in a piezoelectric solid. J. Appl. Mech. 74, 852–860 (2007)

    Article  Google Scholar 

  38. Olesiak, Z., Wnuk, M.: Plastic energy dissipation due to a penny-shaped crack. Int. J. Fract. 4, 383–396 (1968)

    Article  Google Scholar 

  39. Li, X.-Y., Gu, S.-T., He, Q.-C., Chen, W.-Q.: Penny-shaped Dugdale crack in a transversely isotropic medium and under axisymmetric loading. Math. Mech. Solids 18, 246–263 (2012)

    Article  Google Scholar 

  40. Burdekin, F.M., Stone, D.E.W.: The crack opening displacement approach to fracture mechanics in yielding materials. J. Strain Anal. 1, 145–153 (1966)

    Article  Google Scholar 

  41. Huang, J.H., Kuo, W.-S.: The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. J. Appl. Phys. 81, 1378–1386 (1997)

    Article  Google Scholar 

  42. Song, Z.F., Sih, G.C.: Crack initiation behaviour in magnetoelectroelastic composite under in-plane deformation. Theor. Appl. Fract. Mech. 39, 189–207 (2003)

    Article  Google Scholar 

  43. Tian, W.Y., Rajapakse, R.K.N.D.: Fracture analysis of magnetoelectroelastic solids using path independent integrals. Int. J. Fract. 131, 311–335 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keqiang Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K., Chen, Z. Strip yield zone of a penny-shaped crack in a magnetoelectroelastic material under axisymmetric loadings. Acta Mech 227, 2343–2360 (2016). https://doi.org/10.1007/s00707-016-1641-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1641-2

Keywords

Navigation