Skip to main content
Log in

A model for the mechanical response of electrode particles induced by lithium diffusion in Li-ion batteries

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A constitutive model is derived for the viscoplastic response of a host medium driven by diffusion of guest atoms. With reference to the trapping concept, two states of a guest atom are distinguished: mobile and immobilized (due to alloying with the host matrix). Reaction–diffusion equations for the transport of mobile atoms and their trapping, as well as stress–strain relations for the mechanical behavior of the host material, are developed based on the free-energy imbalance inequality. The constitutive equations are applied to the analysis of stresses in a spherical electrode particle under insertion of lithium. Numerical simulation demonstrates the ability of the model to predict (i) formation of a sharp interphase between regions rich and poor in guest atoms, (ii) propagation of the interphase with a constant velocity, and (iii) size-dependent fracture of electrode particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodenough J.B., Kim Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010)

    Article  Google Scholar 

  2. Szczech J.R., Jin S.: Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4, 56–72 (2011)

    Article  Google Scholar 

  3. Zamfir M.R., Nguyen H.T., Moyen E., Lee Y.H., Pribat D.: Silicon nanowires for Li-based battery anodes: a review. J. Mater. Chem. A 1, 9566–9586 (2013)

    Article  Google Scholar 

  4. Liu X.H., Huang J.Y.: In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy Environ. Sci. 4, 3844–3860 (2011)

    Article  Google Scholar 

  5. Liu X.H., Liu Y., Kushima A., Zhang Z., Zhu T., Li J., Huang J.Y.: In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2, 722–741 (2012)

    Article  Google Scholar 

  6. McDowell M.T., Ryu I., Lee S.W., Wang C., Nix W.D., Cui Y.: Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 24, 6034–6041 (2012)

    Article  Google Scholar 

  7. McDowell M.T., Lee S.W., Harris J.T., Korgel B.A., Wang C., Nix W.D., Cui Y.: In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758–764 (2013)

    Article  Google Scholar 

  8. Qi Y., Guo H., Hector L.G., Timmons A.: Threefold increase in the Young’s modulus of graphite negative electrode during lithium intercalation. J. Electrochem. Soc. 157, A558–A566 (2010)

    Article  Google Scholar 

  9. Shenoy V.B., Johari P., Qi Y.: Elastic softening of amorphous and crystalline Li–Si phases with increasing Li concentration: a first-principles study. J. Power Sources 195, 6825–6830 (2010)

    Article  Google Scholar 

  10. Lee S.W., McDowell M.T., Choi J.W., Cui Y.: Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano Lett. 11, 3034–3039 (2011)

    Article  Google Scholar 

  11. Ma Z., Li T., Huang Y.L., Liu J., Zhou Y., Xue D.: Critical silicon-anode size for averting lithiation-induced mechanical failure of lithium-ion batteries. RSC Adv. 3, 7398–7402 (2013)

    Article  Google Scholar 

  12. Liu X.H., Fan F., Yang H., Zhang S., Huang J.Y., Zhu T.: Self-limiting lithiation in silicon nanowires. ACS Nano 7, 1495–1503 (2013)

    Article  Google Scholar 

  13. Zhao K., Pharr M., Wan Q., Wang W.L., Kaxiras E., J.J. Vlassak, Suo Z.: Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries. J. Electrochem. Soc. 159, A238–A243 (2012)

    Article  Google Scholar 

  14. Pharr M., Zhao K., Wang X., Suo Z., Vlassak J.J.: Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. Nano Lett. 12, 5039–5047 (2012)

    Article  Google Scholar 

  15. Deshpande R., Cheng Y.-T., Verbrugge M.W., Timmons A.: Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle batteries and energy storage. J. Electrochem. Soc. 158, A718–A724 (2011)

    Article  Google Scholar 

  16. Chon M.J., Sethuraman V.A., McCormick A., Srinivasan V., Guduru P.R.: Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys. Rev. Lett. 107, 045503 (2011)

    Article  Google Scholar 

  17. Liu P., Sridhar N., Zhang Y.-W.: Lithiation-induced tensile stress and surface cracking in silicon thin film anode for rechargeable lithium battery. J. Appl. Phys. 112, 093507 (2012)

    Article  Google Scholar 

  18. Kushima A., Huang J.Y., Li J.: Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments. ACS Nano 6, 9425–9432 (2012)

    Article  Google Scholar 

  19. McDowell M.T., Lee S.W., Ryu I., Wu H., Nix W.D., Choi J.W., Cui Y.: Novel size and surface oxide effects in silicon nanowires as lithium battery anodes. Nano Lett. 11, 4018–4025 (2011)

    Article  Google Scholar 

  20. Ryu I., Choi J.W., Cui Y., Nix W.D.: Size-dependent fracture of Si nanowire battery anodes. J. Mech. Phys. Solids 59, 1717–1730 (2011)

    Article  Google Scholar 

  21. Liu X.H., Zhong L., Huang S., Mao S.X., Zhu T., Huang J.Y.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531 (2012)

    Article  Google Scholar 

  22. Yang H., Huang S., Huang X., Fan F., Liang W., Liu X.H., Chen L.-Q., Huang J.Y., Li J., Zhu T., Zhang S.: Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett. 12, 1953–1958 (2012)

    Article  Google Scholar 

  23. Liu X.H., Wang J.W., Huang S., Fan F., Huang X., Liu Y., Krylyuk S., Yoo J., Dayeh S.A., Davydov A.V., Mao S.X., Picraux S.T., Zhang S., Li J., Zhu T., Huang J.Y.: In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 12, 749–756 (2012)

    Article  Google Scholar 

  24. Kushima A., Liu X.H., Zhu G., Wang Z.L., Huang J.Y., Li J.: Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation. Nano Lett. 11, 4535–4541 (2011)

    Article  Google Scholar 

  25. Bower A.F., Guduru P.R., Sethuraman V.A.: A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J. Mech. Phys. Solids 59, 804–828 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Haftbaradaran H., Song J., Curtin W.A., Gao H.J.: Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration. J. Power Sources 196, 361–370 (2011)

    Article  Google Scholar 

  27. Loeffel K., Anand L.: A chemo-thermo-mechanically coupled theory for elastic-viscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction. Int. J. Plasticity 27, 1409–1431 (2011)

    Article  MATH  Google Scholar 

  28. Cui Z., Gao F., Qu J.: A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60, 1280–1295 (2012)

    Article  MathSciNet  Google Scholar 

  29. Brassart L., Suo Z.: Reactive flow in large-deformation electrodes of lithium-ion batteries. Int. J. Appl. Mech. 4, 1250023 (2012)

    Article  Google Scholar 

  30. Deshpande R., Qi Y., Cheng Y.-T.: Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications. J. Electrochem. Soc. 157, A967–A971 (2010)

    Article  Google Scholar 

  31. Gao Y.F., Zhou M.: Strong stress-enhanced diffusion in amorphous lithium alloy nanowire electrodes. J. Appl. Phys. 109, 014310 (2011)

    Article  Google Scholar 

  32. Bower A.F., Guduru P.R.: A simple finite element model of diffusion, finite deformation, plasticity and fracture in lithium ion insertion electrode materials. Model. Simul. Mater. Sci. Eng. 20, 045004 (2012)

    Article  Google Scholar 

  33. Grantab R., Shenoy V.B.: Pressure-gradient dependent diffusion and crack propagation in lithiated silicon nanowires. J. Electrochem. Soc. 159, A584–A591 (2012)

    Article  Google Scholar 

  34. Purkayastha R., McMeeking R.M.: A linearized model for lithium ion batteries and maps for their performance and failure. Trans. ASME. J. Appl. Mech. 79, 031021 (2012)

    Article  Google Scholar 

  35. Park J., Lu W., Sastry A.M.: Numerical simulation of stress evolution in lithium manganese dioxide particles due to coupled phase transition and intercalation. J. Electrochem. Soc. 158, A201–A206 (2011)

    Article  Google Scholar 

  36. Huang S., Fan F., Li J., Zhang S., Zhu T.: Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries. Acta Mater. 61, 4354–4364 (2013)

    Article  Google Scholar 

  37. Cui Z., Gao F., Qu J.: Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries. J. Mech. Phys. Solids 61, 293–310 (2013)

    Article  MathSciNet  Google Scholar 

  38. Svoboda J., Fisher F.D.: An improved model for hydrogen diffusion in metals with traps. Acta Mater. 60, 1211–1220 (2012)

    Article  Google Scholar 

  39. Zheng X.Q., Yang Y., Gao Y.F., Hoyt J.J., Asta M., Sun D.Y.: Disorder trapping during crystallization of the B2-ordered NiAl compound. Phys. Rev. E 85, 041601 (2012)

    Article  Google Scholar 

  40. Drozdov A.D., Christiansen J.deC., Gupta R.K., Shah A.P.: Model for anomalous moisture diffusion through a polymer-clay nanocomposite. J. Polym. Sci. B: Polym. Phys. 41, 476–492 (2003)

    Article  Google Scholar 

  41. Bernardi D.M., Chandrasekaran R., Go J.Y.: Solid-state transport of lithium in lithium-ion-battery positive electrodes. J. Electrochem. Soc. 160, A1430–A1441 (2013)

    Article  Google Scholar 

  42. Tritsaris G.A., Zhao K., Okeke O.U., Kaxiras E.: Diffusion of lithium in bulk amorphous silicon: a theoretical study. J. Phys. Chem. C 116, 22212–22216 (2012)

    Article  Google Scholar 

  43. Bohn E., Eckl T., Kamlah M., McMeeking R.: A model for lithium diffusion and stress generation in an intercalation storage particle with phase change. J. Electrochem. Soc. 160, A1638–A1652 (2013)

    Article  Google Scholar 

  44. Zhao K., Pharr M., Cai S., Vlassak J.J., Suo Z.: Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge. J. Am. Ceram. Soc. 94, S226–S235 (2011)

    Article  Google Scholar 

  45. Zhang T., Gao X., Webler B.A., Cockeram B.V., Hayden M., Graham S.M.: Application of the plasticity models that involve three stress invariants. Int. J. Appl. Mech. 4, 1250021 (2012)

    Article  Google Scholar 

  46. Levitas V.I., Attariani H.: Anisotropic compositional expansion and chemical potential for amorphous lithiated silicon under stress tensor. Sci. Rep. 3, 1615 (2013)

    Article  Google Scholar 

  47. Cheng Y.-T., Verbrugge M.W.: Evolution of stress in a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sources 190, 453–460 (2009)

    Article  Google Scholar 

  48. Christensen J., Newman J.: Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10, 293–319 (2006)

    Article  Google Scholar 

  49. Cheng Y.-T., Verbrugge M.W.: Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J. Electrochem. Soc. 157, A508–A516 (2010)

    Article  Google Scholar 

  50. Zhao K., Pharr M., Vlassak J., Suo Z.: Fracture of electrodes in lithium-ion batteries caused by fast charging. J. Appl. Phys. 108, 073517 (2010)

    Article  Google Scholar 

  51. Brassart L., Zhao K., Suo Z.: Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries. Int. J. Solids Struct. 50, 1120–1129 (2013)

    Article  Google Scholar 

  52. Gao Y.F., Zhou M.: Coupled mechano-diffusional driving forces for fracture in electrode materials. J. Power Sources 230, 176–193 (2013)

    Article  Google Scholar 

  53. Kalnaus S., Rhodes K., Daniel C.: A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery. J. Power Sources 196, 8116–8124 (2011)

    Article  Google Scholar 

  54. Dimitrijevic B.J., Aifantis K.E., Hackl K.: The influence of particle size and spacing on the fragmentation of nanocomposite anodes for Li batteries. J. Power Sources 206, 343–348 (2012)

    Article  Google Scholar 

  55. Hao F., Gao X., Fang D.: Diffusion-induced stresses of electrode nanomaterials in lithium-ion battery: the effects of surface stress. J. Appl. Phys. 112, 103507 (2012)

    Article  Google Scholar 

  56. Hao F., Fang D.: Diffusion-induced stresses of spherical core-shell electrodes in lithium-ion batteries: the effects of the shell and surface/interface stress. J. Electrochem. Soc. 160, A595–A600 (2013)

    Article  Google Scholar 

  57. He Y.-L., Hu H.J., Song Y.-C., Guo Z.-S., Liu C., Zhang J.-Q.: Effects of concentration-dependent elastic modulus on the diffusion of lithium ions and diffusion induced stress in layered battery electrodes. J. Power Sources 248, 517–523 (2014)

    Article  Google Scholar 

  58. Gu M., Wang Z., Connell J.G., Perea D.E., Lauhon L.J., Gao F., Wang C.: Electronic origin for the phase transition from amorphous Li x Si to crystalline Li15Si4. ACS Nano 7, 6303–6309 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Drozdov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drozdov, A.D. A model for the mechanical response of electrode particles induced by lithium diffusion in Li-ion batteries. Acta Mech 225, 2987–3005 (2014). https://doi.org/10.1007/s00707-014-1096-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1096-2

Keywords

Navigation