Skip to main content
Log in

Molecular characterization of the complete genome of a novel ormycovirus infecting the ectomycorrhizal fungus Hortiboletus rubellus

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Advancements in high-throughput sequencing and the development of new bioinformatics tools for large-scale data analysis play a crucial role in uncovering virus diversity and enhancing our understanding of virus evolution. The discovery of the ormycovirus clades, a group of RNA viruses that are phylogenetically distinct from all known Riboviria members and are found in fungi, highlights the value of these tools for the discovery of novel viruses. The aim of this study was to examine viral populations in fungal hosts to gain insights into the diversity, evolution, and classification of these viruses. Here, we report the molecular characterization of a newly discovered ormycovirus, which we have named "Hortiboletus rubellus ormycovirus 1" (HrOMV1), that was found in the ectomycorrhizal fungus Hortiboletus rubellus. The bipartite genome of HrOMV1, whose nucleotide sequence was determined by HTS and RLM-RACE, consists of two RNA segments (RNA1 and RNA2) that exhibit similarity to those of previously studied ormycoviruses in their organization and the proteins they encode. The presence of upstream, in-frame AUG triplets in the 5’ termini of both RNA segments suggests that HrOMV1, like certain other ormycoviruses, employs a non-canonical translation initiation strategy. Phylogenetic analysis showed that HrOMV1 is positioned within the gammaormycovirus clade. Its putative RNA-dependent RNA polymerase (RdRp) exhibits sequence similarity to those of other gammaormycovirus members, the most similarity to that of Termitomyces ormycovirus 1, with 33.05% sequence identity. This protein was found to contain conserved motifs that are crucial for RNA replication, including the distinctive GDQ catalytic triad observed in gammaormycovirus RdRps. The results of this study underscore the significance of investigating the ecological role of mycoviruses in mycorrhizal fungi. This is the first report of an ormycovirus infecting a member of the ectomycorrhizal genus Hortiboletus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Perez-Losada M, Arenas M, Galan JC, Bracho MA, Hillung J, Garcia-Gonzalez N, Gonzalez-Candelas F (2020) High-throughput sequencing (HTS) for the analysis of viral populations. Infect Genet Evol 80:104208. https://doi.org/10.1016/j.meegid.2020.104208

    Article  PubMed  Google Scholar 

  2. Edgar RC, Taylor B, Lin V, Altman T, Barbera P, Meleshko D, Lohr D, Novakovsky G, Buchfink B, Al-Shayeb B, Banfield JF, de la Pena M, Korobeynikov A, Chikhi R, Babaian A (2022) Petabase-scale sequence alignment catalyses viral discovery. Nature 602(7895):142–147. https://doi.org/10.1038/s41586-021-04332-2

    Article  CAS  PubMed  Google Scholar 

  3. Neri U, Wolf YI, Roux S, Camargo AP, Lee B, Kazlauskas D, Chen IM, Ivanova N, Zeigler Allen L, Paez-Espino D, Bryant DA, Bhaya D, Consortium RNAVD, Krupovic M, Dolja VV, Kyrpides NC, Koonin EV, Gophna U (2022) Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell 185(21):4023–4037e4018. https://doi.org/10.1016/j.cell.2022.08.023

    Article  CAS  PubMed  Google Scholar 

  4. Zayed AA, Wainaina JM, Dominguez-Huerta G, Pelletier E, Guo J, Mohssen M, Tian F, Pratama AA, Bolduc B, Zablocki O, Cronin D, Solden L, Delage E, Alberti A, Aury JM, Carradec Q, da Silva C, Labadie K, Poulain J, Ruscheweyh HJ, Salazar G, Shatoff E, Tara Oceans Coordinatorsdouble d, Bundschuh R, Fredrick K, Kubatko LS, Chaffron S, Culley AI, Sunagawa S, Kuhn JH, Wincker P, Sullivan MB, Acinas SG, Babin M, Bork P, Boss E, Bowler C, Cochrane G, de Vargas C, Gorsky G, Guidi L, Grimsley N, Hingamp P, Iudicone D, Jaillon O, Kandels S, Karp-Boss L, Karsenti E, Not F, Ogata H, Poulton N, Pesant S, Sardet C, Speich S, Stemmann L, Sullivan MB, Sungawa S, Wincker P (2022) Cryptic and abundant marine viruses at the evolutionary origins of Earth’s RNA virome. Science 376 (6589):156–162. https://doi.org/10.1126/science.abm5847

  5. Ayllon MA, Vainio EJ (2023) Mycoviruses as a part of the global virome: Diversity, evolutionary links and lifestyle. Adv Virus Res 115:1–86. https://doi.org/10.1016/bs.aivir.2023.02.002

    Article  CAS  PubMed  Google Scholar 

  6. Hough B, Steenkamp E, Wingfield B, Read D (2023) Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 15(5). https://doi.org/10.3390/v15051202

  7. Krupovic M, Dolja VV, Koonin EV (2019) Origin of viruses: primordial replicators recruiting capsids from hosts. Nat Rev Microbiol 17(7):449–458. https://doi.org/10.1038/s41579-019-0205-6

    Article  CAS  PubMed  Google Scholar 

  8. Nasir A, Caetano-Anolles G (2015) A phylogenomic data-driven exploration of viral origins and evolution. Sci Adv 1(8):e1500527. https://doi.org/10.1126/sciadv.1500527

    Article  PubMed  PubMed Central  Google Scholar 

  9. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  10. Mount DW (2007) Using the Basic Local Alignment Search Tool (BLAST). CSH Protoc 2007(pdb top17). https://doi.org/10.1101/pdb.top17

  11. Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, Bateman A, Eddy SR (2015) HMMER web server: 2015 update. Nucleic Acids Res 43(W1):W30–38. https://doi.org/10.1093/nar/gkv397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res W244–248 33 (Web Server issue). https://doi.org/10.1093/nar/gki408

  13. Gish W, States DJ (1993) Identification of protein coding regions by database similarity search. Nat Genet 3(3):266–272. https://doi.org/10.1038/ng0393-266

    Article  CAS  PubMed  Google Scholar 

  14. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. https://doi.org/10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Kempen M, Kim SS, Tumescheit C, Mirdita M, Lee J, Gilchrist CLM, Soding J, Steinegger M (2023) Fast and accurate protein structure search with Foldseek. Nat Biotechnol. https://doi.org/10.1038/s41587-023-01773-0

    Article  PubMed  PubMed Central  Google Scholar 

  16. Forgia M, Chiapello M, Daghino S, Pacifico D, Crucitti D, Oliva D, Ayllon M, Turina M (2022) Three new clades of putative viral RNA-dependent RNA polymerases with rare or unique catalytic triads discovered in libraries of ORFans from powdery mildews and the yeast of oenological interest Starmerella bacillaris. Virus Evol 8(1):veac038. https://doi.org/10.1093/ve/veac038

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pagnoni S, Oufensou S, Balmas V, Bulgari D, Gobbi E, Forgia M, Migheli Q, Turina M (2023) A collection of Trichoderma isolates from natural environments in Sardinia reveals a complex virome that includes negative-sense fungal viruses with unprecedented genome organizations. Virus Evol 9(2):vead042. https://doi.org/10.1093/ve/vead042

    Article  PubMed  PubMed Central  Google Scholar 

  18. Das K, Chakraborty D, Baghela A, Singh SK, Dentinger BT (2016) New species of xerocomoid boletes (Boletaceae) from Himalayan India based on morphological and molecular evidence. Mycologia 108(4):753–764. https://doi.org/10.3852/15-206

    Article  CAS  PubMed  Google Scholar 

  19. Frank JL, Siegel N, Schwarz CF, Araki B, Vellinga EC (2020) Xerocomellus (Boletaceae) in western North America. Fungal Syst Evol 6:265–288. https://doi.org/10.3114/fuse.2020.06.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Darissa O, Willingmann P, Adam G (2010) Optimized approaches for the sequence determination of double-stranded RNA templates. J Virol Methods 169(2):397–403. https://doi.org/10.1016/j.jviromet.2010.08.013

    Article  CAS  PubMed  Google Scholar 

  21. Coutts RHA, Livieratos IC (2003) A Rapid Method for Sequencing the 5′- and 3′-Termini of Double-Stranded RNA Viral Templates using RLM-RACE. J Phytopathol 151(9):525–527. https://doi.org/10.1046/j.1439-0434.2003.00755.x

    Article  CAS  Google Scholar 

  22. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kozak M (1991) A short leader sequence impairs the fidelity of initiation by eukaryotic ribosomes. Gene Expr 1(2):111–115

    CAS  PubMed  Google Scholar 

  24. Friebe P, Pena J, Pohl MO, Harris E (2012) Composition of the sequence downstream of the dengue virus 5’ cyclization sequence (dCS) affects viral RNA replication. Virology 422(2):346–356. https://doi.org/10.1016/j.virol.2011.10.025

    Article  CAS  PubMed  Google Scholar 

  25. Khromykh AA, Meka H, Guyatt KJ, Westaway EG (2001) Essential role of cyclization sequences in flavivirus RNA replication. J Virol 75(14):6719–6728. https://doi.org/10.1128/JVI.75.14.6719-6728.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Villordo SM, Gamarnik AV (2009) Genome cyclization as strategy for flavivirus RNA replication. Virus Res 139(2):230–239. https://doi.org/10.1016/j.virusres.2008.07.016

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Dokuz Eylul University Coordinatorship of Scientific Research Projects, with project number FBA-2023-2990.

Author information

Authors and Affiliations

Authors

Contributions

ES conceptualized, designed, and performed the experiments, analyzed the data, and wrote the manuscript. GE performed the experiments and analyzed the data. EK and IA analyzed the data. ES and IA participated in revising the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ergin Sahin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in this study.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Massimo Turina

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin, E., Edis, G., Keskin, E. et al. Molecular characterization of the complete genome of a novel ormycovirus infecting the ectomycorrhizal fungus Hortiboletus rubellus. Arch Virol 169, 110 (2024). https://doi.org/10.1007/s00705-024-06027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-024-06027-1

Navigation