Skip to main content
Log in

The role of receptors in the cross-species spread of coronaviruses infecting humans and pigs

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The pandemic caused by SARS-CoV-2, which has proven capable of infecting over 30 animal species, highlights the critical need for understanding the mechanisms of cross-species transmission and the emergence of novel coronavirus strains. The recent discovery of CCoV-HuPn-2018, a recombinant alphacoronavirus from canines and felines that can infect humans, along with evidence of SARS-CoV-2 infection in pig cells, underscores the potential for coronaviruses to overcome species barriers. This review investigates the origins and cross-species transmission of both human and porcine coronaviruses, with a specific emphasis on the instrumental role receptors play in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cui J, Li F, Shi Z (2019) Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17:181–192

    Article  CAS  PubMed  Google Scholar 

  2. Forni D, Cagliani R, Clerici M, Sironi M (2017) Molecular evolution of human coronavirus genomes. Trends Microbiol 25:35–48

    Article  CAS  PubMed  Google Scholar 

  3. Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, Liu W, Bi Y, Gao GF (2016) Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 24:490–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Woo PCY, Lau SKP, Lam CSF, Lau CCY, Tsang AKL, Lau JHN, Bai R, Teng JLL, Tsang CCC, Wang M, Zheng B, Chan K, Yuen K (2012) Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol 86:3995–4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vlasova AN, Diaz A, Damtie D, Xiu L, Toh T, Lee JS, Saif LJ, Gray GC (2022) Novel canine coronavirus isolated from a hospitalized patient with pneumonia in East Malaysia. Clin Infect Dis 74:446–454

    Article  CAS  PubMed  Google Scholar 

  6. Keep S, Carr BV, Lean FZX, Fones A, Newman J, Dowgier G, Freimanis G, Vatzia E, Polo N, Everest H, Webb I, Mcnee A, Paudyal B, Thakur N, Nunez A, MacLoughlin R, Maier H, Hammond J, Bailey D, Waters R, Charleston B, Tuthill T, Britton P, Bickerton E, Tchilian E (2022) Porcine respiratory coronavirus as a model for acute respiratory coronavirus disease. Front Immunol 13:867707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Turlewicz-Podbielska H, Pomorska-Mól M (2021) Porcine coronaviruses: overview of the state of the art. Virol Sin 36:833–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang Q, Vlasova AN, Kenney SP, Saif LJ (2019) Emerging and re-emerging coronaviruses in pigs. Curr Opin Virol 34:39–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li F (2015) Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol 89:1954–1964

    Article  PubMed  Google Scholar 

  10. Walls AC, Tortorici MA, Bosch B, Frenz B, Rottier PJM, DiMaio F, Rey FA, Veesler D (2016) Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531:114–117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hulswit RJG, de Haan CAM, Bosch BJ (2016) Chapter two—Coronavirus spike protein and tropism changes. In: Ziebuhr J (ed) Advances in virus research. Academic Press, London, pp 29–57

    Google Scholar 

  12. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lanying Du, Zhao G, Kou Z, Ma C, Sun S, Poon VKM, Lu L, Wang L, Debnath AK, Zheng B, Zhou Y, Jiang S (2013) Identification of a receptor-binding domain in the S protein of the novel human coronavirus middle east respiratory syndrome coronavirus as an essential target for vaccine development. J Virol 87:9939–9942

    Article  Google Scholar 

  14. Raj VS, Mou H, Smits SL, Dekkers DHW, Müller MA, Dijkman R, Muth D, Demmers JAA, Zaki A, Fouchier RAM, Thiel V, Drosten C, Rottier PJM, Osterhaus ADME, Bosch BJ, Haagmans BL (2013) Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495:251–254

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoffmann M, Kleine-Weber H, Pöhlmann S (2020) A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell 78:779–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Letko M, Marzi A, Munster V (2020) Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 5:562–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scialo F, Daniele A, Amato F, Pastore L, Matera MG, Cazzola M, Castaldo G, Bianco A (2020) ACE2: the major cell entry receptor for SARS-CoV-2. Lung 198:867–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P (2005) Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA 102:11876

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang K, Chen W, Zhang Z, Deng Y, Lian J, Du P, Wei D, Zhang Y, Sun X, Gong L, Yang X, He L, Zhang L, Yang Z, Geng J, Chen R, Zhang H, Wang B, Zhu Y, Nan G, Jiang J, Li L, Wu J, Lin P, Huang W, Xie L, Zheng Z, Zhang K, Miao J, Cui H, Huang M, Zhang J, Fu L, Yang X, Zhao Z, Sun S, Gu H, Wang Z, Wang C, Lu Y, Liu Y, Wang Q, Bian H, Zhu P, Chen Z (2020) CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther 5:283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gu Y, Cao J, Zhang X, Gao H, Wang Y, Wang J, He J, Jiang X, Zhang J, Shen G, Yang J, Zheng X, Hu G, Zhu Y, Du S, Zhu Y, Zhang R, Xu J, Lan F, Qu D, Xu G, Zhao Y, Gao D, Xie Y, Luo M, Lu Z (2022) Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Res 32:24–37

    Article  CAS  PubMed  Google Scholar 

  21. Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, van der Meer F, Kallio K, Kaya T, Anastasina M, Smura T, Levanov L, Szirovicza L, Tobi A, Kallio-Kokko H, Österlund P, Joensuu M, Meunier FA, Butcher SJ, Winkler MS, Mollenhauer B, Helenius A, Gokce O, Teesalu T, Hepojoki J, Vapalahti O, Stadelmann C, Balistreri G, Simons M (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370:856

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Daly JL, Simonetti B, Klein K, Chen K, Williamson MK, Antón-Plágaro C, Shoemark DK, Simón-Gracia L, Bauer M, Hollandi R, Greber UF, Horvath P, Sessions RB, Helenius A, Hiscox JA, Teesalu T, Matthews DA, Davidson AD, Collins BM, Cullen PJ, Yamauchi Y (2020) Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370:861

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tortorici MA, Walls AC, Joshi A, Park YJ, Eguia RT, Miranda MC, Kepl E, Dosey A, Stevens-Ayers T, Boeckh MJ, Telenti A, Lanzavecchia A, King NP, Corti D, Bloom JD, Veesler D (2022) Structure, receptor recognition, and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glycoprotein. Cell 185:2279–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu C, Tang J, Ma Y, Liang X, Yang Y, Peng G, Qi Q, Jiang S, Li J, Du L, Li F (2015) Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. J Virol 89:6121–6125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shirato K, Maejima M, Islam MT, Miyazaki A, Kawase M, Matsuyama S, Taguchi F (2016) Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity. J Gen Virol 97:2528–2539

    Article  CAS  PubMed  Google Scholar 

  26. Ji C, Wang B, Zhou J, Huang Y (2018) Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells. Virology 517:16–23

    Article  CAS  PubMed  Google Scholar 

  27. Zeng S, Zhang H, Ding Z, Luo R, An K, Liu L, Bi J, Chen H, Xiao S, Fang L (2015) Proteome analysis of porcine epidemic diarrhea virus (PEDV)-infected Vero cells. Proteomics 15:1819–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li W, Hulswit RJG, Kenney SP, Widjaja I, Jung K, Alhamo MA, van Dieren B, van Kuppeveld FJM, Saif LJ, Bosch B (2018) Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Proc Natl Acad Sci 115:E5135

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang YL, Liu J, Wang TY, Chen M, Wang G, Yang YB, Geng X, Sun MX, Meng F, Tang YD, Feng L (2021) Aminopeptidase N is an entry co-factor triggering porcine deltacoronavirus entry via an endocytotic pathway. J Virol 95:e0094421

    Article  PubMed  Google Scholar 

  30. Zhu X, Liu S, Wang X, Luo Z, Shi Y, Wang D, Peng G, Chen H, Fang L, Xiao S (2018) Contribution of porcine aminopeptidase N to porcine deltacoronavirus infection. Emerg Microbes Infect 7:65

    Article  PubMed  PubMed Central  Google Scholar 

  31. Delmas B, Gelfi J, L’Haridon R, Vogel SH, Norén LH (1992) Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature 357:417–420

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peng JY, Punyadarsaniya D, Shin DL, Pavasutthipaisit S, Beineke A, Li G, Wu NH, Herrler G (2020) The cell tropism of porcine respiratory coronavirus for airway epithelial cells is determined by the expression of porcine aminopeptidase N. Viruses 12:1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Whitworth KM, Rowland RRR, Petrovan V, Sheahan M, Cino-Ozuna AG, Fang Y, Hesse R, Mileham A, Samuel MS, Wells KD, Prather RS (2019) Resistance to coronavirus infection in amino peptidase N-deficient pigs. Transgenic Res 28:21–32

    Article  CAS  PubMed  Google Scholar 

  34. Delmas B, Gelfi J, Sjöström H, Noren O, Laude H (1993) Further characterization of aminopeptidase-N as a receptor for coronaviruses. Adv Exp Med Biol 342:293–298

    Article  CAS  PubMed  Google Scholar 

  35. Li W, van Kuppeveld FJM, He Q, Rottier PJM, Bosch B (2016) Cellular entry of the porcine epidemic diarrhea virus. Virus Res 226:117–127

    Article  CAS  PubMed  Google Scholar 

  36. Schultze B, Wahn K, Klenk H, Herrler G (1991) Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity. Virology 180:221–228

    Article  CAS  PubMed  Google Scholar 

  37. Tortorici MA, Walls AC, Lang Y, Wang C, Li Z, Koerhuis D, Boons G, Bosch B, Rey FA, de Groot RJ, Veesler D (2019) Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol 26:481–489

    Article  PubMed  PubMed Central  Google Scholar 

  38. Krempl C, Schultze B, Laude H, Herrler G (1997) Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. J Virol 71:3285–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reguera J, Santiago C, Mudgal G, Ordoño D, Enjuanes L, Casasnovas JM (2012) Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies. PLoS Pathog 8:e1002859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schultze B, Krempl C, Ballesteros ML, Shaw L, Schauer R, Enjuanes L, Herrler G (1996) Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity. J Virol 70:5634–5637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schwegmann-Weßels C, Herrler G (2006) Sialic acids as receptor determinants for coronaviruses. Glycoconjugate J 23:51–58

    Article  Google Scholar 

  42. Edwards CE, Yount BL, Graham RL, Leist SR, Hou YJ, Dinnon KH, Sims AC, Swanstrom J, Gully K, Scobey TD, Cooley MR, Currie CG, Randell SH, Baric RS (2020) Swine acute diarrhea syndrome coronavirus replication in primary human cells reveals potential susceptibility to infection. Proc Natl Acad Sci 117:26915

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–679

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Hu B, Zeng L, Yang X, Ge X, Zhang W, Li B, Xie J, Shen X, Zhang Y, Wang N, Luo D, Zheng X, Wang M, Daszak P, Wang L, Cui J, Shi Z (2017) Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog 13:e1006698

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vennema H, Poland A, Foley J, Pedersen NC (1998) Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology 243:150–157

    Article  CAS  PubMed  Google Scholar 

  46. Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, Vandamme A, Van Ranst M (2005) Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J Virol 79:1595–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang H, Zhang L, Shang Y, Tan R, Ji M, Yue X, Wang N, Liu J, Wang C, Li Y, Zhou T (2020) Emergence and evolution of highly pathogenic porcine epidemic diarrhea virus by natural recombination of a low pathogenic vaccine isolate and a highly pathogenic strain in the spike gene. Virus Evol 6:veaa049

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang X, Hasoksuz M, Spiro D, Halpin R, Wang S, Stollar S, Janies D, Hadya N, Tang Y, Ghedin E, Saif L (2007) Complete genomic sequences, a key residue in the spike protein and deletions in nonstructural protein 3b of US strains of the virulent and attenuated coronaviruses, transmissible gastroenteritis virus and porcine respiratory coronavirus. Virology 358:424–435

    Article  PubMed  Google Scholar 

  49. Null N (2004) Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303:1666–1669

    Article  Google Scholar 

  50. Song H, Tu C, Zhang G, Wang S, Zheng K, Lei L, Chen Q, Gao Y, Zhou H, Xiang H, Zheng H, Chern SW, Cheng F, Pan C, Xuan H, Chen S, Luo H, Zhou D, Liu Y, He J, Qin P, Li L, Ren Y, Liang W, Yu Y, Anderson L, Wang M, Xu R, Wu X, Zheng H, Chen J, Liang G, Gao Y, Liao M, Fang L, Jiang L, Li H, Chen F, Di B, He L, Lin J, Tong S, Kong X, Du L, Hao P, Tang H, Bernini A, Yu X, Spiga O, Guo Z, Pan H, He W, Manuguerra J, Fontanet A, Danchin A, Niccolai N, Li Y, Wu C, Zhao G (2005) Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci USA 102:2430–2435

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang Z, Shen L, Gu X (2016) Evolutionary dynamics of MERS-CoV: potential recombination, positive selection and transmission. Sci Rep 6:25049

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou H, Chen X, Hu T, Li J, Song H, Liu Y, Wang P, Liu D, Yang J, Holmes EC, Hughes AC, Bi Y, Shi W (2020) A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr Biol 30:2196–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhou P, Yang X, Wang X, Hu B, Zhang L, Zhang W, Si H, Zhu Y, Li B, Huang C, Chen H, Chen J, Luo Y, Guo H, Jiang R, Liu M, Chen Y, Shen X, Wang X, Zheng X, Zhao K, Chen Q, Deng F, Liu L, Yan B, Zhan F, Wang Y, Xiao G, Shi Z (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Frutos R, Serra-Cobo J, Chen T, Devaux CA (2020) COVID-19: time to exonerate the pangolin from the transmission of SARS-CoV-2 to humans. Infect Genet Evol 84:104493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu P, Jiang J, Wan X, Hua Y, Li L, Zhou J, Wang X, Hou F, Chen J, Zou J, Chen J (2020) Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? PLoS Pathog 16:e1008421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang T, Wu Q, Zhang Z (2020) Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol 30:1346–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fenollar F, Mediannikov O, Maurin M, Devaux C, Colson P, Levasseur A, Fournier PE, Raoult D (2021) Mink, SARS-CoV-2, and the human-animal interface. Front Microbiol 12:663815

    Article  PubMed  PubMed Central  Google Scholar 

  58. Leroy EM, Ar GM, Brugère-Picoux J (2020) The risk of SARS-CoV-2 transmission to pets and other wild and domestic animals strongly mandates a one-health strategy to control the COVID-19 pandemic. One Health-Amsterdam 10:100133

    Article  Google Scholar 

  59. Patterson EI, Elia G, Grassi A, Giordano A, Desario C, Medardo M, Smith SL, Anderson ER, Prince T, Patterson GT, Lorusso E, Lucente MS, Lanave G, Lauzi S, Bonfanti U, Stranieri A, Martella V, Solari Basano F, Barrs VR, Radford AD, Agrimi U, Hughes GL, Paltrinieri S, Decaro N (2020) Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy. Nat Commun 11:6231

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Agriculture USDO (2021) Confirmation of COVID-19 in Otters at an Aquarium in Georgia.web https://www.aphis.usda.gov/aphis/newsroom/stakeholder-info/sa_by_date/sa-2021/sa-04/covid-georgia-otters. Accessed 21 May 2022

  61. Allender MC, Adkesson MJ, Langan JN, Delk KW, Meehan T, Aitken-Palmer C, McEntire MM, Killian ML, Torchetti M, Morales SA, Austin C, Fredrickson R, Olmstead C, Ke R, Smith R, Hostnik ET, Terio K, Wang L (2022) Multi-species outbreak of SARS-CoV-2 Delta variant in a zoological institution, with the detection in two new families of carnivores. Transbound Emerg Dis 69:e3060–e3075

    Article  CAS  PubMed  Google Scholar 

  62. Klestova Z (2023) Possible spread of SARS-CoV-2 in domestic and wild animals and body temperature role. Virus Res 327:199066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. OIE (2022) SARS-COV-2 in animals.web https://www.woah.org/app/uploads/2022/05/sars-cov-2-situation-report-12.pdf. Accessed 26 May 2022

  64. Koeppel KN, Mendes A, Strydom A, Rotherham L, Mulumba M, Venter M (2022) SARS-CoV-2 reverse zoonoses to pumas and lions, South Africa. Viruses 14:120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vercammen F, Cay B, Gryseels S, Balmelle N, Joffrin L, Van Hoorde K, Verhaegen B, Mathijs E, Van Vredendaal R, Dharmadhikari T, Chiers K, Van Olmen TJS, Agliani G, Van den Brand JMA, Leirs H (2023) SARS-CoV-2 infection in captive hippos (Hippopotamus amphibius), Belgium. Animals 13:316

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chandler JC, Bevins SN, Ellis JW, Linder TJ, Tell RM, Jenkins-Moore M, Root JJ, Lenoch JB, Robbe-Austerman S, DeLiberto TJ, Gidlewski T, Torchetti MK, Shriner SA (2021) SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus). Proc Natl Acad Sci USA 118:e2114828118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Franco LA, Mercedes NJ, Mariela M, Ana P, Monica B, Ana J, Ana J, Silvia M, Eliana C, Diego A, Carolina T, Mariana V, Ana B (2022) An outbreak of SARS-CoV-2 in big hairy armadillos (Chaetophractus villosus) associated with Gamma variant in Argentina three months after being undetectable in humans. Biorxiv: 2022–2028

  68. Mahajan S, Karikalan M, Chander V, Pawde AM, Saikumar G, Semmaran M, Lakshmi PS, Sharma M, Nandi S, Singh KP, Gupta VK, Singh RK, Sharma GK (2022) Detection of SARS-CoV-2 in a free ranging leopard (Panthera pardus fusca) in India. Eur J Wildl Res 68:59

    Article  PubMed  PubMed Central  Google Scholar 

  69. Pereira AH, Vasconcelos AL, Silva VL, Nogueira BS, Silva AC, Pacheco RC, Souza MA, Colodel EM, Ubiali DG, Biondo AW, Nakazato L, Dutra V (2022) Natural SARS-CoV-2 infection in a free-ranging black-tailed marmoset (Mico melanurus) from an urban area in Mid-West Brazil. J Comp Pathol 194:22–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pereira AHB, Pereira GO, Borges JC, de Barros Silva VL, Pereira BHM, Morgado TO, Da Silva Cavasani JP, Slhessarenko RD, Campos RP, Biondo AW, de Carvalho MR, Néspoli PEB, de Souza MA, Colodel EM, Ubiali DG, Dutra V, Nakazato L (2022) A novel host of an emerging disease: SARS-CoV-2 infection in a giant anteater (Myrmecophaga tridactyla) kept under clinical care in Brazil. EcoHealth 19:458–462

    Article  PubMed  Google Scholar 

  71. Cool K, Gaudreault NN, Morozov I, Trujillo JD, Meekins DA, McDowell C, Carossino M, Bold D, Mitzel D, Kwon T, Balaraman V, Madden DW, Artiaga BL, Pogranichniy RM, Roman-Sosa G, Henningson J, Wilson WC, Balasuriya UBR, García-Sastre A, Richt JA (2022) Infection and transmission of ancestral SARS-CoV-2 and its alpha variant in pregnant white-tailed deer. Emerg Microbes Infect 11:95–112

    Article  CAS  PubMed  Google Scholar 

  72. Oreshkova N, Molenaar RJ, Vreman S, Harders F, Oude Munnink BB, Hakze-van Der Honing RW, Gerhards N, Tolsma P, Bouwstra R, Sikkema RS, Tacken MG, de Rooij MM, Weesendorp E, Engelsma MY, Bruschke CJ, Smit LA, Koopmans M, van der Poel WH, Stegeman A (2020) SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Euro Surveill 25:2001005

    Article  PubMed  PubMed Central  Google Scholar 

  73. Porter SM, Hartwig AE, Bielefeldt-Ohmann H, Bosco-Lauth AM, Root JJ (2022) Susceptibility of wild canids to SARS-CoV-2. Emerg Infect Dis 28:1852–1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bertzbach LD, Vladimirova D, Dietert K, Abdelgawad A, Gruber AD, Osterrieder N, Trimpert J (2021) SARS-CoV-2 infection of Chinese hamsters (Cricetulus griseus) reproduces COVID-19 pneumonia in a well-established small animal model. Transbound Emerg Dis 68:1075–1079

    Article  CAS  PubMed  Google Scholar 

  75. Clancy CS, Shaia C, Munster V, de Wit E, Hawman D, Okumura A, Feldmann H, Saturday G, Scott D (2021) Histologic pulmonary lesions of SARS-CoV-2 in 4 nonhuman primate species: an institutional comparative review. Vet Pathol 59:673–680

    Article  PubMed  Google Scholar 

  76. Freuling CM, Breithaupt A, Müller T, Sehl J, Balkema-Buschmann A, Rissmann M, Klein A, Wylezich C, Höper D, Wernike K, Aebischer A, Hoffmann D, Friedrichs V, Dorhoi A, Groschup MH, Beer M, Mettenleiter TC (2020) Susceptibility of raccoon dogs for experimental SARS-CoV-2 infection. Emerg Infect Dis 26:2982–2985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Halfmann PJ, Hatta M, Chiba S, Maemura T, Fan S, Takeda M, Kinoshita N, Hattori S, Sakai-Tagawa Y, Iwatsuki-Horimoto K, Imai M, Kawaoka Y (2020) Transmission of SARS-CoV-2 in domestic cats. N Engl J Med 383:592–594

    Article  PubMed  PubMed Central  Google Scholar 

  78. Munster VJ, Feldmann F, Williamson BN, van Doremalen N, Pérez-Pérez L, Schulz J, Meade-White K, Okumura A, Callison J, Brumbaugh B, Avanzato VA, Rosenke R, Hanley PW, Saturday G, Scott D, Fischer ER, de Wit E (2020) Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature 585:268–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mykytyn AZ, Lamers MM, Okba N, Breugem TI, Schipper D, van den Doel PB, van Run P, van Amerongen G, de Waal L, Koopmans M, Stittelaar KJ, van den Brand J, Haagmans BL (2021) Susceptibility of rabbits to SARS-CoV-2. Emerg Microbes Infect 10:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB, de Meulder D, van Amerongen G, van den Brand J, Okba NMA, Schipper D, van Run P, Leijten L, Sikkema R, Verschoor E, Verstrepen B, Bogers W, Langermans J, Drosten C, Fentener Van Vlissingen M, Fouchier R, de Swart R, Koopmans M, Haagmans BL (2020) Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 368:1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schlottau K, Rissmann M, Graaf A, Schön J, Sehl J, Wylezich C, Höper D, Mettenleiter TC, Balkema-Buschmann A, Harder T, Grund C, Hoffmann D, Breithaupt A, Beer M (2020) SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. Lancet Microbe 1:e218–e225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sia SF, Yan L, Chin AWH, Fung K, Choy K, Wong AYL, Kaewpreedee P, Perera RAPM, Poon LLM, Nicholls JM, Peiris M, Yen H (2020) Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583:834–838

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E, Molenkamp R, van der Spek A, Tolsma P, Rietveld A, Brouwer M, Bouwmeester-Vincken N, Harders F, Hakze-van Der Honing R, Wegdam-Blans MCA, Bouwstra RJ, GeurtsvanKessel C, van der Eijk AA, Velkers FC, Smit LAM, Stegeman A, van der Poel WHM, Koopmans MPG (2021) Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371:172–177

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Bosco-Lauth AM, Walker A, Guilbert L, Porter S, Hartwig A, McVicker E, Bielefeldt-Ohmann H, Bowen RA (2021) Susceptibility of livestock to SARS-CoV-2 infection. Emerg Microbes Infect 10:2199–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Falkenberg S, Buckley A, Laverack M, Martins M, Palmer MV, Lager K, Diel DG (2021) Experimental inoculation of young calves with SARS-CoV-2. Viruses 13:441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ulrich L, Wernike K, Hoffmann D, Mettenleiter TC, Beer M (2020) Experimental infection of cattle with SARS-CoV-2. Emerg Infect Dis 26:2979–2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nelli RK, Phadke K, Castillo G, Yen L, Saunders A, Rauh R, Nelson W, Bellaire BH, Giménez-Lirola LG (2021) Enhanced apoptosis as a possible mechanism to self-limit SARS-CoV-2 replication in porcine primary respiratory epithelial cells in contrast to human cells. Cell Death Discov 7:383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Damas J, Hughes GM, Keough KC, Painter CA, Persky NS, Corbo M, Hiller M, Koepfli K, Pfenning AR, Zhao H, Genereux DP, Swofford R, Pollard KS, Ryder OA, Nweeia MT, Lindblad-Toh K, Teeling EC, Karlsson EK, Lewin HA (2020) Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc Natl Acad Sci 117:22311

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lorusso A, Decaro N, Schellen P, Rottier PJM, Buonavoglia C, Haijema B, de Groot RJ (2008) Gain, preservation, and loss of a group 1a coronavirus accessory glycoprotein. J Virol 82:10312–10317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ballesteros ML, Sánchez CM, Enjuanes L (1997) Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 227:378–388

    Article  CAS  PubMed  Google Scholar 

  91. Mora-Díaz JC, Piñeyro PE, Houston E, Zimmerman J, Giménez-Lirola LG (2019) Porcine hemagglutinating encephalomyelitis virus: a review. Front Vet Sci 6:53

    Article  PubMed  PubMed Central  Google Scholar 

  92. Huang Y, Dickerman AW, Piñeyro P, Li L, Fang L, Kiehne R, Opriessnig T, Meng X, Griffin DE (2013) Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. MBio 4:e713–e737

    Article  Google Scholar 

  93. Teeravechyan S, Frantz PN, Wongthida P, Chailangkarn T, Jaru-ampornpan P, Koonpaew S, Jongkaewwattana A (2016) Deciphering the biology of porcine epidemic diarrhea virus in the era of reverse genetics. Virus Res 226:152–171

    Article  CAS  PubMed  Google Scholar 

  94. Lau SKP, Wong EYM, Tsang C, Ahmed SS, Au-Yeung RKH, Yuen K, Wernery U, Woo PCY, Gallagher T (2018) Discovery and sequence analysis of four deltacoronaviruses from birds in the middle east reveal interspecies jumping with recombination as a potential mechanism for avian-to-avian and avian-to-mammalian transmission. J Virol 92:e218–e265

    Article  Google Scholar 

  95. Boley PA, Alhamo MA, Lossie G, Yadav KK, Vasquez-Lee M, Saif LJ, Kenney SP (2020) Porcine deltacoronavirus infection and transmission in poultry, United States(1). Emerg Infect Dis 26:255–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jung K, Hu H, Saif LJ (2017) Calves are susceptible to infection with the newly emerged porcine deltacoronavirus, but not with the swine enteric alphacoronavirus, porcine epidemic diarrhea virus. Arch Virol 162:2357–2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liang Q, Zhang H, Li B, Ding Q, Wang Y, Gao W, Guo D, Wei Z, Hu H (2019) Susceptibility of chickens to porcine deltacoronavirus infection. Viruses 11:573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lednicky JA, Tagliamonte MS, White SK, Elbadry MA, Alam MM, Stephenson CJ, Bonny TS, Loeb JC, Telisma T, Chavannes S, Ostrov DA, Mavian C, Beau De Rochars VM, Salemi M, Morris JG (2021) Independent infections of porcine deltacoronavirus among Haitian children. Nature 600:133–137

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gong L, Li J, Zhou Q, Xu Z, Chen L, Zhang Y, Xue C, Wen Z, Cao Y (2017) A new bat-HKU2-like coronavirus in swine, China, 2017. Emerg Infect Dis 23:1607–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhou P, Fan H, Lan T, Yang X, Shi W, Zhang W, Zhu Y, Zhang Y, Xie Q, Mani S, Zheng X, Li B, Li J, Guo H, Pei G, An X, Chen J, Zhou L, Mai K, Wu Z, Li D, Anderson DE, Zhang L, Li S, Mi Z, He T, Cong F, Guo P, Huang R, Luo Y, Liu X, Chen J, Huang Y, Sun Q, Zhang X, Wang Y, Xing S, Chen Y, Sun Y, Li J, Daszak P, Wang L, Shi Z, Tong Y, Ma J (2018) Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556:255–258

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Corman VM, Baldwin HJ, Tateno AF, Zerbinati RM, Annan A, Owusu M, Nkrumah EE, Maganga GD, Oppong S, Adu-Sarkodie Y, Vallo P, Da SFLV, Leroy EM, Thiel V, van der Hoek L, Poon LLM, Tschapka M, Drosten C, Drexler JF, Schultz-Cherry S (2015) Evidence for an ancestral association of human coronavirus 229E with bats. J Virol 89:11858–11870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Corman VM, Eckerle I, Memish ZA, Liljander AM, Dijkman R, Jonsdottir H, Juma NK, Kamau E, Younan M, Al MM, Assiri A, Gluecks I, Musa BE, Meyer B, Müller MA, Hilali M, Bornstein S, Wernery U, Thiel V, Jores J, Drexler JF, Drosten C (2016) Link of a ubiquitous human coronavirus to dromedary camels. Proc Natl Acad Sci USA 113:9864–9869

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tao Y, Shi M, Chommanard C, Queen K, Zhang J, Markotter W, Kuzmin IV, Holmes EC, Tong S, Perlman S (2017) Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J Virol 91:e1916–e1953

    Article  Google Scholar 

  104. Han MG, Cheon D, Zhang X, Saif LJ (2006) Cross-protection against a human enteric coronavirus and a virulent bovine enteric coronavirus in gnotobiotic calves. J Virol 80:12350–12356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Herrewegh AAPM, Smeenk I, Horzinek MC, Rottier PJM, de Groot RJ (1998) Feline coronavirus type II strains 79–1683 and 79–1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol 72:4508–4514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Terada Y, Matsui N, Noguchi K, Kuwata R, Shimoda H, Soma T, Mochizuki M, Maeda K (2014) Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses. PLoS One 9:e106534

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Liaoning Provincial Natural Science Foundation of China (2019-ZD-0804), Scientific Research Projects and Incubation Projects from the College of Animal Husbandry and Veterinary Medicine of Jinzhou Medical University (2023py07), and College Students Innovation and Entrepreneurship Training Programs (20201016039, 202310160015).

Author information

Authors and Affiliations

Authors

Contributions

Zhiwei Yan and Jie Zhuang wrote the main manuscript text, Tiezhong Zhou prepared Figures 1, 2, 3, Yonggang Li and Huinuan Wang modified and checked the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yonggang Li or Huinuan Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Handling Editor: Pablo Pineyro.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, J., Yan, Z., Zhou, T. et al. The role of receptors in the cross-species spread of coronaviruses infecting humans and pigs. Arch Virol 169, 35 (2024). https://doi.org/10.1007/s00705-023-05956-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05956-7

Navigation