Skip to main content

Advertisement

Log in

ENPP1 inhibits the transcription activity of the hepatitis B virus pregenomic promoter by upregulating the acetylation of LMNB1

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Current therapies for hepatitis B virus (HBV) infection can slow disease progression but cannot cure the infection, as it is difficult to eliminate or permanently silence HBV covalently closed circular DNA (cccDNA). The interaction between host factors and cccDNA is essential for their formation, stability, and transcriptional activity. Here, we focused on the regulatory role of the host factor ENPP1 and its interacting transcription factor LMNB1 in HBV replication and transcription to better understand the network of host factors that regulate HBV, which may facilitate the development of new antiviral drugs. Overexpression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) in Huh7 cells decreased HBV pregenomic RNA (pgRNA) and hepatitis B core antigen (HBcAg) expression levels, whereas knockdown of ENPP1 increased them. A series of HBV promoter and mutant plasmids were constructed, and a luciferase reporter assay showed that overexpression of ENPP1 caused inhibition of the HBV promoter and its mutants. A DNA pull-down assay showed that lamin B1 (LMNB1), but not ENPP1, interacts directly with the HBV enhancer II/ basic core promoter (EnhII/BCP). ZDOCK and PyMOL software were used to predict the interaction of ENPP1 with LMNB1. Overexpression of LMNB1 inhibited the activity of the HBV promoter and its mutant. The acetylation levels at the amino acids 111K, 261K, and 483K of LMNB1 were reduced compared to the control, and an LMNB1 acetylation mutant containing 111R, 261Q, 261R, 483Q, and 483R showed increased promoter activity. In summary, ENPP1 together with LMNB1 increased the acetylation level at 111K and 261K, and LMNB1 inhibited the activity of HBV promoter and downregulated the expression of pregenomic RNA and HBcAg. Our follow-up studies will investigate the expression, clinical significance, and relevance of ENPP1 and LMNB1 in HBV patient tissues, explore the effect of LMNB1 on post-transcriptional progression, and examine whether ENPP1 can reduce cccDNA levels in the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the submitted article.

Abbreviations

cccDNA:

Covalently closed circular DNA

cGAMP:

Cyclic GMP-AMP

ENPP1:

Ectonucleotide pyrophosphatase/phosphodiesterase 1

EnhII / BCP:

Enhancer II/ basic core promoter

HBcAg:

Hepatitis B core antigen

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

HRP:

Horseradish peroxidase

IFN-a:

Interferon a

LMNB1:

Lamin B1

NAs:

Nucleotide analogues

PEG-IFN:

Pegylated interferon

pgRNA:

Pregenomic RNA

PVDF:

Polyvinylidene fluoride

SDS-PAGE:

SDS polyacrylamide gel electrophoresis

siRNA:

Small interfering RNA

References

  1. World Health Organization (2023) World health statistics 2023: monitoring health for the SDGs, sustainable development goals. World Health Organization, Geneva, p 42

    Google Scholar 

  2. Armas P, Coux G, Weiner AMJ, Calcaterra NB (2021) What’s new about Cnbp? Divergent functions and activities for a conserved nucleic acid binding protein. Biochim Biophys Acta Gen Subj 1865(11):129996

    Article  CAS  PubMed  Google Scholar 

  3. Bayliss J, Lim L, Thompson AJ, Desmond P, Angus P, Locarnini S, Revill PA (2013) Hepatitis B virus splicing is enhanced prior to development of hepatocellular carcinoma. J Hepatol 59(5):1022–1028

    Article  CAS  PubMed  Google Scholar 

  4. Chaparian RR, van Kessel JC (2021) Promoter pull-down assay: a biochemical screen for DNA-binding proteins. Methods Mol Biol 2346:165–172

    Article  CAS  PubMed  Google Scholar 

  5. Fioravanti R, Mautone N, Rovere A, Rotili D, Mai A (2020) Targeting histone acetylation/deacetylation in parasites: an update (2017–2020). Curr Opin Chem Biol 57:65–74

    Article  CAS  PubMed  Google Scholar 

  6. Galganski L, Urbanek MO, Krzyzosiak WJ (2017) Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res 45(18):10350–10368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghany MG (2017) Current treatment guidelines of chronic hepatitis B: the role of nucleos(t)ide analogues and peginterferon. Best Pract Res Clin Gastroenterol 31(3):299–309

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  8. Howell J, Pedrana A, Schroeder SE, Scott N, Aufegger L, Atun R, Baptista-Leite R et al (2021) A global investment framework for the elimination of hepatitis B. J Hepatol 74(3):535–549

    Article  PubMed  Google Scholar 

  9. Hwang H, Vreven T, Pierce BG, Hung JH, Weng Z (2010) Performance of Zdock and Zrank in capri rounds 13–19. Proteins 78(15):3104–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kato K, Nishimasu H, Oikawa D, Hirano S, Hirano H, Kasuya G, Ishitani R, Tokunaga F, Nureki O (2018) Structural insights into cgamp degradation by ecto-nucleotide pyrophosphatase phosphodiesterase 1. Nat Commun 9(1):4424–4432

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Kimura H (2013) Histone modifications for human epigenome analysis. J Hum Genet 58(7):439–445

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Ito M, Sun S, Chida T, Nakashima K, Suzuki T (2016) Luc7l3/crop inhibits replication of hepatitis B virus via suppressing enhancer ii/basal core promoter activity. Sci Rep 6:36741

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nicolini LA, Orsi A, Tatarelli P, Viscoli C, Icardi G, Sticchi L (2019) A global view to Hbv chronic infection: evolving strategies for diagnosis, treatment and prevention in immunocompetent individuals. Int J Environ Res Public Health 16(18):3307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ochs SD, Liu J, Fernando TM, Fecher RA, Sulentic CE (2012) A dioxin response element in the multiple cloning site of the Pgl3 luciferase reporter influences transcriptional activity. Toxicol In Vitro 26(6):979–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ogura N, Watashi K, Noguchi T, Wakita T (2014) Formation of covalently closed circular DNA in Hep38.7-Tet cells, a tetracycline inducible hepatitis B virus expression cell line. Biochem Biophys Res Commun 452(3):315–321

    Article  CAS  PubMed  Google Scholar 

  16. Philips CA, Ahamed R, Abduljaleel JK, Rajesh S, Augustine P (2021) Critical updates on chronic hepatitis B virus infection in 2021. Cureus 13(10):e19152

    PubMed  PubMed Central  Google Scholar 

  17. Sobrevilla-Navarro AA, Sandoval-Rodríguez A, García-Bañuelos JJ, Armendariz-Borunda J, Salazar-Montes AM (2018) Interferon-Α silencing by small interference RNA increases adenovirus transduction and transgene expression in Huh7 cells. Mol Biotechnol 60(4):251–258

    Article  CAS  PubMed  Google Scholar 

  18. Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic Gmp-Amp synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Sun S, Nakashima K, Ito M, Li Y, Chida T, Takahashi H, Watashi K et al (2017) Involvement of Puf60 in transcriptional and post-transcriptional regulation of hepatitis B virus pregenomic RNA expression. Sci Rep 7(1):12874

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT et al (2021) The string database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49(1):605–612

    Article  Google Scholar 

  21. Takahama Y, Uto H, Kanmura S, Oketani M, Ido A, Kusumoto K, Hasuike S et al (2008) Association of a genetic polymorphism in ectonucleotide pyrophosphatase/phosphodiesterase 1 with hepatitis C virus infection and hepatitis C virus core antigen levels in subjects in a hyperendemic area of Japan. J Gastroenterol 43(12):942–950

    Article  CAS  PubMed  Google Scholar 

  22. Tsukuda S, Watashi K (2020) Hepatitis B virus biology and life cycle. Antivir Res 182:104925

    Article  CAS  PubMed  Google Scholar 

  23. Turton KL, Meier-Stephenson V, Badmalia MD, Coffin CS, Patel TR (2020) Host transcription factors in hepatitis B virus RNA synthesis. Viruses 12(2):160–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang LB, Karpova A, Gritsenko MA, Kyle JE, Cao S, Li Y, Rykunov D et al (2021) Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell 39(4):509–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Q, Cheng ST, Chen J (2020) Hbx mediated increase of Sirt1 contributes to Hbv-related hepatocellular carcinoma tumorigenesis. Int J Med Sci 17(12):1783–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang YC, Yang SS, Su CW, Wang YJ, Lee KC, Huo TI, Lin HC, Huang YH (2016) Predictors of response to pegylated interferon in chronic hepatitis B: a real-world hospital-based analysis. Sci Rep 6:29605

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wei ZQ, Zhang YH, Ke CZ, Chen HX, Ren P, He YL, Hu P et al (2017) Curcumin inhibits hepatitis B virus infection by down-regulating Cccdna-bound histone acetylation. World J Gastroenterol 23(34):6252–6260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xia Y, Guo H (2020) Hepatitis B virus Cccdna: formation, regulation and therapeutic potential. Antivir Res 180:104824

    Article  CAS  PubMed  Google Scholar 

  29. Xia Y, Protzer U (2017) Control of hepatitis B virus by cytokines. Viruses 9(1):18–30

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Key Program, co-sponsored by the province and ministry (222301420071), the General Project of the Henan Natural Science Foundation (222300420572, 222102310149), and the Youth Program of the National Natural Science Foundation of China (82104641).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Ding or Suofeng Sun.

Additional information

Handling Editor: Michael A. Purdy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Li, Y., Zhu, H. et al. ENPP1 inhibits the transcription activity of the hepatitis B virus pregenomic promoter by upregulating the acetylation of LMNB1. Arch Virol 169, 36 (2024). https://doi.org/10.1007/s00705-023-05949-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05949-6

Navigation