Skip to main content
Log in

Rational approach to vaccination against highly pathogenic avian influenza in Nigeria: a scientific perspective and global best practice

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Since 2006, highly pathogenic avian influenza (HPAI) subtypes H5Nx have adversely affected poultry production in Nigeria. Successive waves of infections in the last two decades have raised concerns about the ability to contain infections by biosecurity alone, and evidence of recurrent outbreaks suggests a need for adoption of additional control measures such as vaccination. Although vaccination can be used to control virus spread and reduce the morbidity and mortality caused by HPAI, no country using vaccination alone as a control measure against HPAI has been able to eliminate or prevent re-infection. To inform policy in Nigeria, we examined the intricacies of HPAI vaccination, government regulations, and scientific data regarding what kind of vaccines can be used based on subtype, whether inactivated or live attenuated should be used, when to deliver vaccine either proactively or reactively, where to apply vaccination either in disease control zones, regionally, or nationally, and how to vaccinate the targeted poultry population for optimum success. A resurgence of HPAI outbreaks in Nigeria since 2018, after the country was declared free of the epidemic following the first outbreak in 2006, has led to enhanced intervention. Controlled vaccination entails monitoring the application of vaccines, the capacity to differentiate vaccinated from infected (DIVA) flocks, and assessing seroconversion or other immune correlates of protection. Concurrent surveillance for circulating avian influenza virus (AIV) and analyzing AIV isolates obtained via surveillance efforts for genetic and/or antigenic mismatch with vaccine strains are also important. Countries with high investment in commercial poultry farms like Nigeria may identify and zone territories where vaccines can be applied. This may include ring vaccination to control HPAI in areas or production systems at risk of infection. Before adoption of vaccination as an additional control measure on commercial poultry farms, two outcomes must be considered. First, vaccination is an admission of endemicity. Secondly, vaccinated flocks may no longer be made accessible to international poultry markets in accordance with WOAH trade regulations. Vaccination must therefore be approached with utmost caution and be guided by science-based evidence throughout the implementation strategy after thorough risk assessment. Influenza vaccine research, development, and controlled application in addition to biosecurity may be a precautionary measure in the evolving HPAI scenario in Nigeria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meseko CA, Ehizibolo DO, Vakuru C (2018) Migratory waterfowls from Europe as potential source of highly pathogenic avian influenza infection to Nigeria poultry. Nigerian Veterinary Journal 39(1):1–15

    Article  Google Scholar 

  2. Khanna M et al (2012) Pandemic Influenza A H1N1 (2009) Virus: Lessons from the Past and Implications for the Future. Indian J Virol 23(1):12–17

    Article  PubMed  PubMed Central  Google Scholar 

  3. Asha K, Kumar B (2019) Emerging Influenza D Virus Threat: What We Know so Far! J Clin Med, 8(2)

  4. Joannis TM et al (2008) Serologic and virologic surveillance of avian influenza in Nigeria, 2006-7. Eurosurveillance 13(42):19007

    Article  PubMed  Google Scholar 

  5. Coker T et al (2014) Circulation of the low pathogenic avian influenza subtype H5N2 virus in ducks at a live bird market in Ibadan, Nigeria. Infect Dis Poverty 3(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee DH et al (2017) Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4. J Vet Sci 18(S1):269–280

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sulaiman L et al (2021) Live Bird Markets in Nigeria: A Potential Reservoir for H9N2 Avian Influenza Viruses. Viruses, 13(8)

  8. Fasanmi OG et al (2017) Public health concerns of highly pathogenic avian influenza H5N1 endemicity in Africa. Vet World 10(10):1194–1204

    Article  PubMed  PubMed Central  Google Scholar 

  9. Monne I et al (2015) Highly Pathogenic Avian Influenza A(H5N1) Virus in Poultry, Nigeria, 2015. Emerg Infect Dis 21(7):1275–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ameji NO et al (2022) Qualitative Assessment of the Clinico-Pathological Features of Highly Pathogenic Avian Influenza H5N1 Outbreaks in Commercial Poultry and Peri-Domestic Birds in Northern Nigeria. J Biosci Med 10:273–288

    Google Scholar 

  11. The Evolution of Highly Pathogenic Avian Influenza A (H5) in Poultry in Nigeria, 2021–2022 Viruses, 2023. 15(6): p. 1387

  12. Fusaro A et al (2009) Introduction into Nigeria of a distinct genotype of avian influenza virus (H5N1). Emerg Infect Dis 15(3):445–447

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ducatez MF et al (2006) Avian flu: multiple introductions of H5N1 in Nigeria. Nature 442(7098):37

    Article  CAS  PubMed  Google Scholar 

  14. Adene DF, Oguntade AE (2006) The Structure and the Importance of the Commercial and Village Based Poultry Industry in Nigeria, in FAO, Rome.

  15. Ijoma SI et al (2020) Biosecurity challenges in the control of avian influenza in Nigeria. Sokoto J Veterinary Sci 18(3):150–157

    Article  Google Scholar 

  16. Ameji NO et al (2019) Outbreak of highly pathogenic avian influenza subtype H5N8 in two multi-age chicken farms in Jos, Plateau State, Nigeria. Sokoto J Veterinary Sci 17(3):60–65

    Article  Google Scholar 

  17. Okoli SC (2021) Descriptive epidemiology of the outbreak of avian influenza in Nigeria: a retrospective review, 2015–2017 PAMJ-OH, 6(11)

  18. Kwaghe AV et al (2017) Economic Losses and Implications of Highly Pathogenic Avian Influenza (HPAI) H 5 N 1 Resurgence in Nigeria.

  19. Poultry Sector (2020) Study Nigeria. ; Available from: https://www.rvo.nl/sites/default/files/2020/10/Poultry-Sector-Study-Nigeria.pdf

  20. Bello MB et al (2018) Diagnostic and Vaccination Approaches for Newcastle Disease Virus in Poultry: The Current and Emerging Perspectives BioMed Research International, 2018: p. 7278459

  21. Ravikumar R, Chan J, Prabakaran M (2022) Vaccines against Major Poultry Viral Diseases: Strategies to Improve the Breadth and Protective Efficacy. Viruses 14(6):1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee DH, Criado MF, Swayne DE (2021) Pathobiological Origins and Evolutionary History of Highly Pathogenic Avian Influenza Viruses. Cold Spring Harb Perspect Med, 11(2)

  23. Sutton TC (2018) The Pandemic Threat of Emerging H5 and H7 Avian Influenza Viruses. Viruses, 10(9)

  24. Swayne DE (2012) Impact of Vaccines and Vaccination on Global Control of Avian Influenza. Avian Dis 56(4s1):818–828

    Article  PubMed  Google Scholar 

  25. Hill EM et al (2018) The impact of surveillance and control on highly pathogenic avian influenza outbreaks in poultry in Dhaka division, Bangladesh. PLoS Comput Biol 14(9):e1006439

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rimi NA et al (2019) A Decade of Avian Influenza in Bangladesh: Where Are We Now? Trop Med Infect Dis, 4(3)

  27. Tran CC et al (2016) An Alternative Vaccination Approach for The Prevention of Highly Pathogenic Avian Influenza Subtype H5N1 in The Red River Delta, Vietnam -A Geospatial-Based Cost-Effectiveness Analysis. Vet Sci, 3(1)

  28. Le TH, Nguyen NT (2014) Evolutionary dynamics of highly pathogenic avian influenza A/H5N1 HA clades and vaccine implementation in Vietnam. Clin Exp Vaccine Res 3(2):117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huynh HTT et al (2019) Individual and flock immunity responses of naïve ducks on smallholder farms after vaccination with H5N1 Avian Influenza vaccine: a study in a province of the Mekong Delta, Vietnam. PeerJ 7:e6268

    Article  PubMed  PubMed Central  Google Scholar 

  30. Aly MM, Arafa A, Hassan MK (2008) Epidemiological findings of outbreaks of disease caused by highly pathogenic H5N1 avian influenza virus in poultry in Egypt during 2006. Avian Dis 52(2):269–277

    Article  CAS  PubMed  Google Scholar 

  31. Kayali G et al (2016) Avian Influenza A(H5N1) Virus in Egypt. Emerg Infect Dis 22(3):379–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kandeil A et al (2018) Efficacy of commercial vaccines against newly emerging avian influenza H5N8 virus in Egypt. Sci Rep 8(1):9697

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sawitri Siregar E et al (2007) The vaccination programme in Indonesia. Dev Biol (Basel) 130:151–158

    CAS  PubMed  Google Scholar 

  34. Yupiana Y et al (2010) Risk factors of poultry outbreaks and human cases of H5N1 avian influenza virus infection in West Java Province, Indonesia. Int J Infect Dis 14(9):e800–e805

    Article  PubMed  Google Scholar 

  35. Swayne DE et al (2015) Antibody titer has positive predictive value for vaccine protection against challenge with natural antigenic-drift variants of H5N1 high-pathogenicity avian influenza viruses from Indonesia. J Virol 89(7):3746–3762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dharmayanti NL et al (2014) Genetic characterization of clade 2.3.2.1 avian influenza A(H5N1) viruses, Indonesia, 2012. Emerg Infect Dis 20(4):671–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Domenech J et al (2009) Experiences with vaccination in countries endemically infected with highly pathogenic avian influenza: the Food and Agriculture Organization perspective. Revue scientifique et technique (International Office of Epizootics) 28(1):293–305

    CAS  PubMed  Google Scholar 

  38. Bingsheng K, Yijun H (2007) Poultry sector in China: Structural changes during the past decade and future trends Poultry in the 21st century: Avian influenza and beyond, Proceedings of the International Poultry Conference, November, Bangkok,

  39. Chen H (2009) H5N1 avian influenza in China. Sci China C Life Sci 52(5):419–427

    Article  PubMed  Google Scholar 

  40. Li C, Bu Z, Chen H (2014) Avian influenza vaccines against H5N1 ‘bird flu’. Trends Biotechnol 32(3):147–156

    Article  CAS  PubMed  Google Scholar 

  41. Qiao C et al (2009) Recombinant fowlpox virus vector-based vaccine completely protects chickens from H5N1 avian influenza virus. Antiviral Res 81(3):234–238

    Article  CAS  PubMed  Google Scholar 

  42. Qiao CL et al (2003) Protection of chickens against highly lethal H5N1 and H7N1 avian influenza viruses with a recombinant fowlpox virus co-expressing H5 haemagglutinin and N1 neuraminidase genes. Avian Pathol 32(1):25–32

    Article  CAS  PubMed  Google Scholar 

  43. Ray K et al (2008) Characterization of the complete genome of influenza A (H5N1) virus isolated during the 2006 outbreak in poultry in India. Virus Genes 36(2):345–353

    Article  CAS  PubMed  Google Scholar 

  44. Nagarajan S et al (2012) Avian influenza (H5N1) virus of clade 2.3.2 in domestic poultry in India. PLoS ONE 7(2):e31844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tosh C et al (2016) Multiple introductions of a reassortant H5N1 avian influenza virus of clade 2.3.2.1c with PB2 gene of H9N2 subtype into Indian poultry. Infect Genet Evol 43:173–178

    Article  CAS  PubMed  Google Scholar 

  46. Action Plan for Prevention, Control & Containment of Avian Influenza (Revised 2021). Available from: https://megahvt.gov.in/notification/revised_AI_Action_Plan_2021.pdf

  47. Bhat S et al (2018) A two dose immunization with an inactivated reassortant H5N2 virus protects chickens against lethal challenge with homologous 2.3.2.1 clade and heterologous 2.2 clade highly pathogenic avian influenza H5N1 viruses. Vet Microbiol 217:149–157

    Article  CAS  PubMed  Google Scholar 

  48. Meat, poultry - Production. 19 May. 2023]; Available from: https://ourworldindata.org/grapher/poultry-production-tonnes?tab=table

  49. Dey P et al (2023) Immune Control of Avian Influenza Virus Infection and Its Vaccine Development. Vaccines 11(3):593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dimitrov KM et al (2017) Newcastle disease vaccines—A solved problem or a continuous challenge? Vet Microbiol 206:126–136

    Article  CAS  PubMed  Google Scholar 

  51. Kumar B et al (2018) The emerging influenza virus threat: status and new prospects for its therapy and control. Arch Virol 163(4):831–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen J et al (2021) Advances in Development and Application of Influenza Vaccines. Front Immunol 12:711997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Johansson BE, Bucher DJ, Kilbourne ED (1989) Purified influenza virus hemagglutinin and neuraminidase are equivalent in stimulation of antibody response but induce contrasting types of immunity to infection. J Virol 63(3):1239–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hein R et al (2021) Review of Poultry Recombinant Vector Vaccines. Avian Dis 65(3):438–452

    Article  PubMed  Google Scholar 

  55. Milani A et al (2017) Vaccine immune pressure influences viral population complexity of avian influenza virus during infection. Vet Microbiol 203:88–94

    Article  CAS  PubMed  Google Scholar 

  56. Huang P et al (2023) Potential cross-species transmission of highly pathogenic avian influenza H5 subtype (HPAI H5) viruses to humans calls for the development of H5-specific and universal influenza vaccines. Cell Discov 9(1):58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Perez-Losada M et al (2015) Recombination in viruses: mechanisms, methods of study, and evolutionary consequences. Infect Genet Evol 30:296–307

    Article  CAS  PubMed  Google Scholar 

  58. Guyonnet V, Peters AR (2020) Are current avian influenza vaccines a solution for smallholder poultry farmers? Gates Open Res 4:122

    Article  PubMed  PubMed Central  Google Scholar 

  59. Park BR et al (2021) Broad cross protection by recombinant live attenuated influenza H3N2 seasonal virus expressing conserved M2 extracellular domain in a chimeric hemagglutinin. Sci Rep 11(1):4151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Janssens Y et al (2022) The role of cell-mediated immunity against influenza and its implications for vaccine evaluation. Front Immunol 13:959379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bull JJ (2015) Evolutionary reversion of live viral vaccines: Can genetic engineering subdue it? Virus Evol, 1(1)

  62. Maas R et al (2011) Maternal immunity against avian influenza H5N1 in chickens: limited protection and interference with vaccine efficacy. Avian Pathol 40(1):87–92

    Article  PubMed  Google Scholar 

  63. Stills HF Jr. (2005) Adjuvants and antibody production: dispelling the myths associated with Freund’s complete and other adjuvants. Ilar j 46(3):280–293

    Article  CAS  PubMed  Google Scholar 

  64. OIE, F.a. The Global Strategy for Prevention and Control df H5N1 Highly Pathogenic Avian Influenza (2008) ; Available from: https://www.fao.org/3/aj134e/aj134e00.pdf

  65. Avian Influenza (2018) Vaccine. : Plotkin’s Vaccines (Seventh Edition)

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, CM; writing – original draft preparation, CM, NOA, BK, and MC; writing – review and editing, CM, NOA, BK and MC. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Clement Meseko.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Communicated by Sheela Ramamoorthy

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meseko, C., Ameji, N.O., Kumar, B. et al. Rational approach to vaccination against highly pathogenic avian influenza in Nigeria: a scientific perspective and global best practice. Arch Virol 168, 263 (2023). https://doi.org/10.1007/s00705-023-05888-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05888-2

Keywords

Navigation