Skip to main content
Log in

Viral inhibitory potential of hyoscyamine in Japanese encephalitis virus–infected embryonated chicken eggs involving multiple signaling pathways

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis worldwide. The emergence of new genotypes of the virus and a high rate of mutation make it necessary to develop alternative treatment strategies against this deadly pathogen. Although the antiviral properties of Atropa belladonna and some of its active components, such as atropine and scopolamine, have been studied, the effect of another important component, hyoscyamine, against JEV infection has not yet been investigated. In this study, we investigated the antiviral effect of hyoscyamine against JEV and its immunomodulatory activity in embryonated chicken eggs. Pretreatment with hyoscyamine sulphate resulted in a significant decrease in the viral load in both chorioallantoic membrane (CAM) and brain tissues at 48 and 96 hours postinfection. In silico studies showed stable binding and interaction between hyoscyamine and non-structural protein 5 (NS5), suggesting that this could be the basis of its antiviral effect. Embryonated eggs pretreated with hyoscyamine sulphate showed upregulation of Toll-like receptor 3 (TLR3), TLR7, TLR8, interleukin 4 (IL-4), and IL-10 as well as interferons and regulatory factors. Hyoscyamine sulphate was also found to cause significant downregulation of TLR4. The potential use of hyoscyamine for controlling JEV replication and its dissemination to the brain suggest that it may be a promising therapy option against JEV in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

JEV:

Japanese encephalitis virus

IFN:

Interferon

RH:

Relative humidity

BSL:

Biosafety level

TLR:

Toll-like receptor

RIG:

Retinoic acid-inducible gene

MDA:

Melanoma differentiation associated gene

PAMP:

Pathogen-associated molecular pattern

ERK:

Extracellular signal-regulated kinase

MAPK:

Mitogen-activated protein kinase

AP:

Activator protein

CAM:

Chorioallantoic membrane

BBB:

Blood brain barrier

NIV:

National Institute of Virology

PBS:

Phosphate-buffered saline

BSA:

Bovine serum albumin

RCSB:

Research collaborator for structural bioinformatics

PDB:

Protein Data Bank

PDBQT:

Protein Data Bank, Partial Charge (Q), and Atom Type (T)

MD:

Molecular dynamics

RMSD:

Root mean square deviation

RMSF:

Root mean square fluctuation

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

ANOVA:

Analysis of variance

NS:

Non-structural

IRF:

Interferon regulatory factor

IL:

Interleukin

TRIF:

TIR-domain-containing adaptor-inducing interferon β

NF-κB:

Nuclear factor kappa light chain enhancer of activated B cells

References

  1. Unni SK, Růžek D, Chhatbar C, Mishra R, Johri MK, Singh SK (2011) Japanese encephalitis virus: from genome to infectome. Microbes Infect 13(4):312–321

    Article  CAS  PubMed  Google Scholar 

  2. Zhang H, Luo H, Rehman MU, Nabi F, Li K, Lan Y, Huang S, Zhang L, Mehmood K, Shahzad M, Li J (2017) Evidence of JEV in Culex tritaeniorhynchus and pigs from high altitude regions of Tibet, China. J Vector Borne Dis 54(1):69

    PubMed  Google Scholar 

  3. Suthar MS, Aguirre S, Fernandez-Sesma A (2013) Innate immune sensing of flaviviruses. PLoS Pathog 9(9):e1003541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takahashi H, Pool V, Tsai TF, Chen RT (2000) Adverse events after Japanese encephalitis vaccination: review of post-marketing surveillance data from Japan and the United States. Vaccine 18(26):2963–2969

    Article  CAS  PubMed  Google Scholar 

  5. Vannice KS, Hills SL, Schwartz LM, Barrett AD, Heffelfinger J, Hombach J, Letson GW, Solomon T, Marfin AA (2021) The future of Japanese encephalitis vaccination: expert recommendations for achieving and maintaining optimal JE control. npj Vaccines 6(1):82

    Article  PubMed  PubMed Central  Google Scholar 

  6. Diamond MS (2009) Mechanisms of evasion of the type I interferon antiviral response by flaviviruses. J Interferon Cytokine Res 29(9):521–530

    Article  CAS  PubMed  Google Scholar 

  7. Zheng B, Wang X, Liu Y, Li Y, Long S, Gu C, Ye J, Xie S, Cao S (2019) Japanese Encephalitis Virus infection induces inflammation of swine testis through RIG-I—NF-ĸB signaling pathway. Vet Microbiol 238:108430

    Article  CAS  PubMed  Google Scholar 

  8. Chowdhury P, Khan SA (2019) Differential expression levels of inflammatory chemokines and TLRs in patients suffering from mild and severe Japanese encephalitis. Viral Immunol 32(1):68–74

    Article  CAS  PubMed  Google Scholar 

  9. Han YW, Choi JY, Uyangaa E, Kim SB, Kim JH, Kim BS, Kim K, Eo SK (2014) Distinct dictation of Japanese encephalitis virus-induced neuroinflammation and lethality via triggering TLR3 and TLR4 signal pathways. PLoS Pathog 10(9):e1004319

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang Y, El-Far M, Dupuy FP, Abdel-Hakeem MS, He Z, Procopio FA et al (2016) HCV RNA activates APCs via TLR7/TLR8 while virus selectively stimulates macrophages without inducing antiviral responses. Sci Rep 6(1):1–13

    Google Scholar 

  11. Awais M, Wang K, Lin X, Qian W, Zhang N, Wang C et al (2017) TLR7 deficiency leads to TLR8 compensative regulation of immune response against JEV in mice. Front Immunol 8:160

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lannes N, Summerfield A, Filgueira L (2017) Regulation of inflammation in Japanese encephalitis. J Neuroinflammation 14(1):1–11

    Article  Google Scholar 

  13. Jiang R, Ye J, Zhu B, Song Y, Chen H, Cao S (2014) Roles of TLR3 and RIG-I in mediating the inflammatory response in mouse microglia following Japanese encephalitis virus infection. J Immunol Res 2014:787023

    Article  PubMed  PubMed Central  Google Scholar 

  14. Abubakr M, Mandal SC, Banerjee S (2013) Natural compounds against flaviviral infections. Nat Prod Commun 8(10):1487–1492. https://doi.org/10.1177/1934578X1300801039

    Article  CAS  PubMed  Google Scholar 

  15. Sengupta M, Bandyopadhyay B, Das S (2014) Preventive and curative role of belladonna 200 against Japanese encephalitis virus infection in adult mice. Int J Curr Microbiol Appl Sci 3(1):160–166

    Google Scholar 

  16. Bhattacharjee A, Chaudhuri R, Dash JJ, Saha M, Choudhury L, Roy S (2021) Pre-treatment with scopolamine naturally suppresses Japanese encephalitis viral load in embryonated chick through regulation of multiple signaling pathways. Appl Biochem Biotechnol 193(6):1654–1674

    Article  CAS  PubMed  Google Scholar 

  17. Scher CD, Haudenschild C, Klagsbrun M (1976) The chick chorioallantoic membrane as a model system for the study of tissue invasion by viral transformed cells. Cell 8(3):373–382

    Article  CAS  PubMed  Google Scholar 

  18. Janzer RC (1993) The blood-brain barrier: cellular basis. J Inherit Metab Dis 16(4):639–647

    Article  CAS  PubMed  Google Scholar 

  19. Lobrinus JA, Juillerat-Jeanneret L, Darekar P, Schlosshauer B, Janzer RC (1992) Induction of the blood-brain barrier specific HT7 and neurothelin epitopes in endothelial cells of the chick chorioallantoic vessels by a soluble factor derived from astrocytes. Dev Brain Res 70(2):207–211

    Article  CAS  Google Scholar 

  20. Holash JA, Stewart PA (1993) Chorioallantoic membrane (CAM) vessels do not respond to blood-brain barrier (BBB) induction. Frontiers in Cerebral Vascular Biology. Springer, Boston, pp 223–228

    Google Scholar 

  21. Nawa M, Takasaki T, Yamada KI, Kurane I, Akatsuka T (2003) Interference in Japanese encephalitis virus infection of Vero cells by a cationic amphiphilic drug, chlorpromazine. J Gen Virol 84(7):1737–1741

    Article  CAS  PubMed  Google Scholar 

  22. Andoh T, Kawamata H, Umatake M, Terasawa K, Takegami T, Ochiai H (1998) Effect of bafilomycin Al on the growth of Japanese encephalitis virus in Vero cells. J Neurovirol 4(6):627–631

    Article  CAS  PubMed  Google Scholar 

  23. Takamatsu Y, Okamoto K, Dinh DT, Yu F, Hayasaka D, Uchida L et al (2014) NS1 protein expression facilitates production of Japanese encephalitis virus in avian cells and embryonated chicken eggs. J Gen Virol 95(2):373–383

    Article  CAS  PubMed  Google Scholar 

  24. Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27(3):493–497

    Article  Google Scholar 

  25. Arcon JP, Modenutti CP, Avendaño D, Lopez ED, Defelipe LA, Ambrosio FA et al (2019) AutoDock Bias: improving binding mode prediction and virtual screening using known protein–ligand interactions. Bioinformatics 35(19):3836–3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seeliger D, de Groot BL (2010) Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 24(5):417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Studio D (2008) Discovery Studio. Accelrys [2.1]

  28. Seibert MM, Patriksson A, Hess B, Van Der Spoel D (2005) Reproducible polypeptide folding and structure prediction using molecular dynamics simulations. J Mol Biol 354(1):173–183

    Article  CAS  PubMed  Google Scholar 

  29. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519

    Article  Google Scholar 

  30. Evans DJ, Holian BL (1985) The nose–hoover thermostat. J Chem Phys 83(8):4069–4074

    Article  CAS  Google Scholar 

  31. Brauer R, Chen P (2015) Influenza virus propagation in embryonated chicken eggs. JoVE (J Vis Exp) 97:e52421

    Google Scholar 

  32. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  CAS  PubMed  Google Scholar 

  33. Glasel JA (1995) Validity of nucleic acid purities monitored by 260 nm/280 nm absorbance ratios. Biotechniques 18(1):62–63

    CAS  PubMed  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  35. Jie H, Lian L, Qu LJ, Zheng JX, Hou ZC, Xu GY et al (2013) Differential expression of Toll-like receptor genes in lymphoid tissues between Marek’s disease virus-infected and noninfected chickens. Poult Sci 92(3):645–654

    Article  CAS  PubMed  Google Scholar 

  36. Barjesteh N, Behboudi S, Brisbin JT, Villanueva AI, Nagy E, Sharif S (2014) TLR ligands induce antiviral responses in chicken macrophages. PLoS One 9(8):e105713

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pieper J, Methner U, Berndt A (2008) Heterogeneity of avian γδ T cells. Vet Immunol Immunopathol 124(3–4):241–252

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Yin Y, Lan X, Ye F, Tian K, Zhao X et al (2017) Molecular characterization, expression of chicken TBK1 gene and its effect on IRF3 signaling pathway. PLoS One 12(5):e0177608

    Article  PubMed  PubMed Central  Google Scholar 

  39. Swift ML (1997) GraphPad prism, data analysis, and scientific graphing. J Chem Inf Comput Sci 37(2):411–412

    Article  CAS  Google Scholar 

  40. Beutler BA (2009) TLRs and innate immunity. Blood 113(7):1399–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nazmi A, Dutta K, Hazra B, Basu A (2014) Role of pattern recognition receptors in flavivirus infections. Virus Res 185:32–40

    Article  CAS  PubMed  Google Scholar 

  42. Song P, Zheng N, Zhang L, Liu Y, Chen T, Bao C et al (2017) Downregulation of interferon-β and inhibition of TLR3 expression are associated with fatal outcome of severe fever with thrombocytopenia syndrome. Sci Rep 7(1):1–11

    Google Scholar 

  43. Chang TH, Liao CL, Lin YL (2006) Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-κB activation. Microbes Infect 8(1):157–171

    Article  CAS  PubMed  Google Scholar 

  44. Miettinen M, Sareneva T, Julkunen I, Matikainen S (2001) IFNs activate toll-like receptor gene expression in viral infections. Genes Immun 2(6):349–355

    Article  CAS  PubMed  Google Scholar 

  45. Tsai SY, Segovia JA, Chang TH, Morris IR, Berton MT, Tessier PA et al (2014) DAMP molecule S100A9 acts as a molecular pattern to enhance inflammation during influenza A virus infection: role of DDX21-TRIF-TLR4-MyD88 pathway. PLoS Pathog 10(1):e1003848

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhao Y, Liu Q, Yang L, He D, Wang L, Tian J et al (2013) TLR4 inactivation protects from graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Cell Mol Immunol 10(2):165–175

    Article  CAS  PubMed  Google Scholar 

  47. Best SM (2017) The many faces of the flavivirus NS5 protein in antagonism of type I interferon signaling. J Virol 91(3):e01970-16

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fernandes PO, Chagas MA, Rocha WR, Moraes AH (2021) Non-structural protein 5 (NS5) as a target for antiviral development against established and emergent flaviviruses. Curr Opin Virol 50:30–39

    Article  CAS  PubMed  Google Scholar 

  49. Li XD, Shan C, Deng CL, Ye HQ, Shi PY, Yuan ZM et al (2014) The interface between methyltransferase and polymerase of NS5 is essential for flavivirus replication. PLoS Negl Trop Dis 8(5):e2891

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chang RY, Hsu TW, Chen YL, Liu SF, Tsai YJ, Lin YT et al (2013) Japanese encephalitis virus non-coding RNA inhibits activation of interferon by blocking nuclear translocation of interferon regulatory factor 3. Vet Microbiol 166(1–2):11–21

    Article  CAS  PubMed  Google Scholar 

  51. Ye J, Chen Z, Li Y, Zhao Z, He W, Zohaib A et al (2017) Japanese encephalitis virus NS5 inhibits type I interferon (IFN) production by blocking the nuclear translocation of IFN regulatory factor 3 and NF-κB. J Virol 91(8):e00039-e117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Saxena V, Mathur A, Krishnani N, Dhole TN (2008) An insufficient anti-inflammatory cytokine response in mouse brain is associated with increased tissue pathology and viral load during Japanese encephalitis virus infection. Adv Virol 153(2):283–292

    CAS  Google Scholar 

  53. Kennedy MK, Torrance DS, Picha KS, Mohler KM (1992) Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery. J Immunol 149(7):2496–2505

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are extremely thankful to the Department of Biotechnology, St. Xavier’s College, Kolkata, Department of Cardiology, R.G Kar Medical College & Hospital, Sarada Multispeciality Hospital, for providing us with different facilities for the wet lab experiments. We also acknowledge Om Saswat Sahoo from the Department of Biotechnology, National Institute of Technology Duragpur for his sincere help and contributions to this article. We are also deeply indebted to Rev. Dr. Dominic Savio, S.J, Principal & Rector, St. Xavier’s College, Kolkata, Dr. Satadal Das, Consultant Senior Microbiologist, Peerless Hospital & B.K Roy Research Centre. We also convey our gratitude to the National Institute of Virology (NIV) Pune for providing us with the viral strains.

Funding

This work was not supported by any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: AB, MS. Acquisition of data: AB, RN, MS, AP, SK. Analysis and interpretation of data: AB, RN. Drafting of manuscript: AB. Critical revision: AB, MS, AP. Supervision and research resources supply: RN, MS, SK, SR. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Arghyadeep Bhattacharjee.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: Michael A. Purdy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, A., Naga, R., Saha, M. et al. Viral inhibitory potential of hyoscyamine in Japanese encephalitis virus–infected embryonated chicken eggs involving multiple signaling pathways. Arch Virol 168, 264 (2023). https://doi.org/10.1007/s00705-023-05883-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05883-7

Navigation