Skip to main content
Log in

Production of immunogenic recombinant L1 protein of bovine papillomavirus type 9 causing teat papillomatosis

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Bovine papillomavirus type 9 (BPV9) is a causative agent of severe teat papillomatosis. Considering the lack of efficient BPV culture methods, recombinant proteins such as virus-like particles developed through genetic engineering may serve as a useful tool for developing effective vaccines against BPV infection. In this study, we successfully produced immunogenic particles composed of recombinant L1 protein of BPV9 (rBPV9-L1), using a baculovirus expression system. rBPV9-L1-immunized mice produced BPV9-specific IgG, which did not cross-react with BPV type 6, which is another causative agent of teat papillomatosis. Hence, immunogenic rBPV9-L1 is potentially applicable as a vaccine candidate for teat papillomatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bernard HU, Burk RD, de Villiers EM, zur Hausen H (2012) Family Papillomaviridae. In: King AMQ (ed) Virus Taxonomy, 9th edn. Academic press, London, pp 235–248

    Google Scholar 

  2. Bettonville V, Nicol JT, Thelen N, Thiry M, Fillet M, Jacobs N, Servais AC (2016) Study of intact virus-like particles of human papillomavirus by capillary electrophoresis. Electrophoresis 37:579–586

    Article  CAS  Google Scholar 

  3. Campo MS (2003) Papillomavirus and disease in humans and animals. Vet Comp Oncol 1:3–14

    Article  CAS  Google Scholar 

  4. Christensen ND, Kreider JW, Cladel NM, Patrick SD, Welsh PA (1990) Monoclonal antibody-mediated neutralization of infectious human papillomavirus type 11. J Virol 64:5678–5681

    Article  CAS  Google Scholar 

  5. Crespo SEI, Lunardi M, Otonel RAA, Headley SA, Alfieri AF, Alfieri AA (2019) Genetic characterization of a putative new type of bovine papillomavirus in the Xipapillomavirus 1 species in a Brazilian dairy herd. Virus Genes 55:682–687

    Article  CAS  Google Scholar 

  6. Ghim S, Christensen ND, Kreider JW, Jenson AB (1991) Comparison of neutralization of BPV-1 infection of C127 cells and bovine fetal skin xenografts. Int J Cancer 49:285–289

    Article  CAS  Google Scholar 

  7. Harnacker J, Hainisch EK, Shafti-Keramat S, Kirnbauer R, Brandt S (2017) Type-specific L1 virus-like particle-mediated protection of horses from experimental bovine papillomavirus 1-induced pseudo-sarcoid formation is long-lasting. J Gen Virol 98:1329–1333

    Article  CAS  Google Scholar 

  8. Harper DM, Franco EL, Wheeler C et al (2004) Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomized, controlled trial. Lancet 364:1757–1765

    Article  CAS  Google Scholar 

  9. Hatama S, Nishida T, Kadota K, Uchida I, Kanno T (2009) Bovine papillomavirus type 9 induces epithelial papillomas on the teat skin of heifers. Vet Microbiol 136:347–351

    Article  Google Scholar 

  10. Hatama S, Nobumoto K, Kanno T (2008) Genomic and phylogenetic analysis of two novel bovine papillomaviruses, BPV-9 and BPV-10. J Gen Virol 89:158–163

    Article  CAS  Google Scholar 

  11. Jesus AL, Mariz FC, Souza HM et al (2012) Expression of the bovine papillomavirus type 1, 2 and 4 L1 genes in the yeast Pichia pastoris. Genet Mol Res 11:2598–2607

    Article  CAS  Google Scholar 

  12. Kang SM, Song JM, Quan FS, Compans RW (2009) Influenza vaccines based on virus-like particles. Virus Res 143:140–146

    Article  CAS  Google Scholar 

  13. Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT (1992) Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA 89:12180–12184

    Article  CAS  Google Scholar 

  14. Kirnbauer R, Chandrachud LM, O’Neil BW et al (1996) Virus-like particles of bovine papillomavirus type 4 in prophylactic and therapeutic immunization. Virology 219:37–44

    Article  CAS  Google Scholar 

  15. Koutsky LA, Ault KA, Wheeler CM et al (2002) A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med 347:1645–1651

    Article  CAS  Google Scholar 

  16. Love AJ, Chapman SN, Matic S, Noris E, Lomonossoff GP, Taliansky M (2012) In planta production of a candidate vaccine against bovine papillomavirus type 1. Planta 236:1305–1313

    Article  CAS  Google Scholar 

  17. Lunardi M, de Camargo TC, Alfieri AF et al (2016) Genetic diversity of bovine papillomavirus types, including two putative new types, in teat warts from dairy cattle herds. Arch Virol 161:1569–1577

    Article  CAS  Google Scholar 

  18. Maeda Y, Shibahara T, Wada Y et al (2007) An outbreak of teat papillomatosis in cattle caused by bovine papillomavirus (BPV) type 6 and unclassified BPVs. Vet Microbiol 121:242–248

    Article  Google Scholar 

  19. Matsuura Y, Possee RD, Overton HA, Bishop DH (1987) Baculovirus expression vectors: the requirements for high level expression of proteins, including glycoproteins. J Gen Virol 68:1233–1250

    Article  CAS  Google Scholar 

  20. Tozato CC, Lunardi M, Alfieri AF et al (2013) Teat papillomatosis associated with bovine papillomavirus types 6, 7, 9, and 10 in dairy cattle from Brazil. Braz J Microbiol 44:905–909

    Article  Google Scholar 

  21. Watanabe S, Iizuka T, Hatama S, Kanno T, Mase M, Shibahara T (2017) Production of highly immunogenic virus-like particles of bovine papillomavirus type 6 in silkworm pupae. Vaccine 35:5878–5882

    Article  CAS  Google Scholar 

  22. Wu PC, Chen TY, Chi JN, Chien MS, Huang C (2016) Efficient expression and purification of porcine circovirus type 2 virus-like particles in Escherichia coli. J Biotechnol 220:78–85

    Article  CAS  Google Scholar 

  23. Yan D, Wei YQ, Guo HC, Sun SQ (2015) The application of virus-like particles as vaccines and biological vehicles. Appl Microbiol Biotechnol 99:10415–10432

    Article  CAS  Google Scholar 

  24. Zhai Y, Zhong Z, Zariffard M, Spear GT, Qiao L (2013) Bovine papillomavirus-like particles presenting conserved epitopes from membrane-proximal external region of HIV-1 gp41 induced mucosal and systemic antibodies. Vaccine 31:5422–5429

    Article  CAS  Google Scholar 

  25. Zhu W, Yuan D, Norimine J et al (2019) Teat papillomatosis in dairy herds: First detection of bovine papillomavirus type 10 in China. J Vet Med Sci 81:933–936

    Article  Google Scholar 

Download references

Funding

This study was supported by a grant from the Project of NARO Bio-Oriented Technology Research Advancement Institution (the special scheme project on vitalizing management entities of agriculture, forestry, and fisheries).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoko Watanabe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Animal experiments were carried out in accordance with the regulations and guidelines of the Animal Ethics Committee of the National Institute of Animal Health (Approval number 19-046).

Additional information

Handling Editor: Carolina Scagnolari.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, S., Shibahara, T., Andoh, K. et al. Production of immunogenic recombinant L1 protein of bovine papillomavirus type 9 causing teat papillomatosis. Arch Virol 165, 1441–1444 (2020). https://doi.org/10.1007/s00705-020-04612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04612-8

Navigation