Skip to main content

Advertisement

Log in

Amino acid differences in the N-terminal half of the polyprotein of Chinese turnip mosaic virus isolates affect symptom expression in Nicotiana benthamiana and radish

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Wang LZ, He QS (2005) Chinese radish. Science and Technology Literature Press, Beijing

    Google Scholar 

  2. Wang LZ, Liu WD, Li HJ (1988) Study on anti-turnip mosaic virus variety resources of summer Radish. Chin J Nanjing Agric Univ 11:32–38

    CAS  Google Scholar 

  3. Zhao JP, Zhou CM, Chen JS et al (2004) Research progress on characteristics of turnip mosaic virus (TuMV). Chin J Microbiol 31:100–104

    Google Scholar 

  4. Han S, Wang L, Zuqin AP (1988) Investigation and pathogenic identification of radish virus disease in Nanjing suburbs. J Nanjing Agric Univ 11(3):39–43

    Google Scholar 

  5. Nguyen HD, Tran HTN, Ohshima K (2013) Genetic variation of the Turnip mosaic virus population of Vietnam: a case study of founder, regional, and local influences. Virus Res 171:138–149

    Article  CAS  PubMed  Google Scholar 

  6. Nyalugwe EP, Jones RAC, Barbetti MJ et al (2015) Biological and molecular variation amongst Australian turnip mosaic virus isolates. Plant Pathol 64:1215–1223

    Article  CAS  Google Scholar 

  7. Zheng GH, Peng DW, Tong QX et al (2017) Occurrence of turnip mosaic virus in Phalaenopsis sp. in China. J Plant Pathol 99:703–706

    Google Scholar 

  8. Walsh JA, Jenner CE (2002) Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3:289–300

    Article  CAS  PubMed  Google Scholar 

  9. Tomimura K, Gibbs AJ, Jenner CE et al (2010) The phylogeny of turnip mosaic virus; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent ‘emergence’ in East Asia. Mol Ecol 12:2099–2111

    Article  CAS  Google Scholar 

  10. Tomlinson JA (1987) Epidemiology and control of virus diseases of vegetables. Ann Appl Biol 110:661–681

    Article  Google Scholar 

  11. Cai L, Xu ZY, Chen KR et al (2005) Recent advances in Turnip mosaic virus. Chin J Oil Crop Sci 27:104–110

    Google Scholar 

  12. Liu GX, Dai C, Xu YY et al (2016) Research status of turnip anti-turnip Mosaic virus. Chin J Yangzte Veg 8:31–34

    Google Scholar 

  13. Shukla DD, Ward CW, Brunt AA (1994) The Potyviridae. CAB International, Wallingford

    Google Scholar 

  14. Chung BY, Miller WA, Atkins JF et al (2008) An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA 105:5897–5902

    Article  CAS  PubMed  Google Scholar 

  15. Ohshima K, Yamaguchi Y, Hirota R et al (2002) Molecular evolution of turnip mosaic virus: evidence of host adaptation, genetic recombination and geographical spread. J Gen Virol 83:1511–1521

    Article  CAS  PubMed  Google Scholar 

  16. Tomimura K, Spak J, Katis N et al (2004) Comparisons of the genetic structure of populations of turnip mosaic virus in west and east Eurasia. Virology 330(2):408–423

    Article  CAS  PubMed  Google Scholar 

  17. Tomitaka Y, Ohshima K (2010) A phylogeographical study of the turnip mosaic virus population in east Asia reveals an ‘emergent’ lineage in Japan. Mol Ecol 15:4437–4457

    Article  CAS  Google Scholar 

  18. Yasaka R, Fukagawa H, Ikematsu M et al (2017) The timescale of emergence and spread of turnip mosaic potyvirus. Sci Rep 7:4240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tian YP, Zhu XP, Liu JL et al (2007) Molecular characterization of the 3’-terminal region of turnip mosaic virus isolates from eastern China. J Phytopathol 155:333–341

    Article  CAS  Google Scholar 

  20. Chen J, Chen JP, Adams MJ (2002) Variation between turnip mosaic virus isolates in Zhejiang province, China and evidence for recombination. J Phytopathol 150:142–145

    Article  Google Scholar 

  21. Hahm YI (1995) Recent occurrence of TuMV disease on radish and Chinese cabbage in alpine region, Kang-won province. Plant Dis Agric 1:45–46

    Google Scholar 

  22. Hahm YI, Kwon M, Kim JS et al (1998) Surveys on disease occurrence in major horticultural crops in Kangwon alpine areas. Korean J Plant Pathol 14:668–675

    Google Scholar 

  23. Chung JS, Han JY, Kim JK et al (2015) Survey of viruses present in radish fields in 2014. Res Plant Dis 21:235–242

    Article  CAS  Google Scholar 

  24. Han JY, Chung J, Kim J et al (2016) Comparison of helper component-protease RNA silencing suppression activity, subcellular localization, and aggregation of three Korean isolates of Turnip mosaic virus. Virus Genes 52:592–596

    Article  CAS  PubMed  Google Scholar 

  25. Gong J, Ju HK, Kim IH et al (2019) Sequence variations among seventeen new radish isolates of Turnip mosaic virus showing differential pathogenicity in Nicotiana benthamiana and Raphanus sativus. Phytopathology. https://doi.org/10.1094/phyto-12-17-0401-r

    Article  PubMed  Google Scholar 

  26. Shi ML, Li HY, Schubert J et al (2007) Sequence analysis of CP and HC-Pro genes of Turnip mosaic virus isolates from China. Acta Virol 52:59–62

    Google Scholar 

  27. Wang HY, Liu JL, Gao R et al (2009) Complete genomic sequence analysis of Turnip mosaic virus basal-BR isolates from China. Virus Genes 38:421–428

    Article  CAS  PubMed  Google Scholar 

  28. Li MJ, Kim JK, Seo EY et al (2014) Sequence variability in the HC-Pro coding regions of Korean soybean mosaic virus isolates is associated with differences in RNA silencing suppression. Arch Virol 159:1373–1383

    Article  CAS  PubMed  Google Scholar 

  29. Zubareva IA, Vinogradova SV, Gribova TN et al (2013) Genetic diversity of turnip mosaic virus and the mechanism of its transmission by Brassica seeds. Doklady Biochem Biophys Mol Biol 450:119–122

    Article  CAS  Google Scholar 

  30. Zhu F, Sun Y, Wang Y et al (2016) Molecular characterization of the complete genome of three basal-BR isolates of turnip mosaic virus infecting Raphanus sativus in China. Int J Mol Sci 17:E888

    Article  CAS  PubMed  Google Scholar 

  31. Tan Z, Wada Y, Chen J et al (2004) Inter- and intralineage recombinants are common in natural populations of turnip mosaic virus. J Gen Virol 85:2683–2696

    Article  CAS  PubMed  Google Scholar 

  32. Park CH, Ju HK, Han JY et al (2017) Complete nucleotide sequences and construction of full-length infectious cDNA clones of cucumber green mottle mosaic virus (CGMMV) in a versatile newly developed binary vector including both 35S and T7 promoters. Virus Genes 53:1–14

    Article  Google Scholar 

  33. Gal-On A (2000) A point mutation in the FRNK motif of the potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. Phytopathology 90:467–473

    Article  CAS  PubMed  Google Scholar 

  34. Sáenz P, Cervera MT, Dallot S et al (2000) Identification of a pathogenicity determinant of plum pox virus in the sequence encoding the C-terminal region of protein P3 + 6K1. J Gen Virol 81:557–566

    Article  PubMed  Google Scholar 

  35. Sáenz P, Quiot L, Quiot JB et al (2001) Pathogenicity determinants in the complex virus population of a plum pox virus isolate. Mol Plant Microbe Interact 14(3):278–287

    Article  PubMed  Google Scholar 

  36. Redondo E, Krause-Sakate R, Yang SJ et al (2001) Lettuce mosaic virus pathogenicity determinants in susceptible and tolerant lettuce cultivars map to different regions of the viral genome. Mol Plant Microbe Interact 14:804–810

    Article  CAS  PubMed  Google Scholar 

  37. Jenner CE, Tomimura K, Ohshima K et al (2002) Mutations in turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology 300:50–59

    Article  CAS  PubMed  Google Scholar 

  38. Jenner CE, Wang X, Tomimura K et al (2003) The dual role of the potyvirus P3 protein of turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol Plant Microbe Interact 16:777–784

    Article  CAS  PubMed  Google Scholar 

  39. Suehiro N, Natsuaki T, Watanabe T et al (2004) An important determinant of the ability of turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. J Gen Virol 85:2087–2098

    Article  CAS  PubMed  Google Scholar 

  40. Liu J, Yu X, Tian Y et al (2006) Molecular characterization and coat protein gene expression of a Turnip mosaic virus isolate from radish in Weifang. Acta Hortic Sin 33:84–88

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from the Next-Generation BioGreen 21 Program (project no. PJ01365501), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang-Keun Oh, John Hammond or Hyoun-Sub Lim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Handling Editor: Elvira Fiallo-Olivé.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 521 kb)

Supplementary material 2 (DOC 169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, WX., Seo, EY., Cho, IS. et al. Amino acid differences in the N-terminal half of the polyprotein of Chinese turnip mosaic virus isolates affect symptom expression in Nicotiana benthamiana and radish. Arch Virol 164, 1683–1689 (2019). https://doi.org/10.1007/s00705-019-04242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04242-9

Keywords

Navigation