Skip to main content
Log in

Genetic characterization of a novel G9P[23] rotavirus A strain identified in southwestern China with evidence of a reassortment event between human and porcine strains

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Group A rotaviruses (RVAs) are important zoonotic pathogens that cause intestinal disease in humans and other mammals. In this study, the novel strain RVA/Pig/China/SC11/2017/G9P[23](SC11) was isolated from fecal samples from a pig farm in Sichuan province, southwestern China. The complete genome was found to be 18,347 bp in length with 11 segments. The genotype constellation of strain SC11 was G9-P[23]-I12-R1-C1-M1-A1-N1-T1-E1-H1, according to whole-genome sequencing analysis. The VP1, VP2, VP4, VP6, NSP1–NSP3, and NSP5 genes of RVA strain SC11 were found to be closely related to those of porcine and/or porcine-like human RVAs. Meanwhile, the VP7 and NSP4 genes of strain SC11 were closely related to genes of human RVAs. However, it was difficult to pinpoint the porcine or human origin of the VP3 gene of strain SC11 based on the available data. These results showed that SC11 originated from a natural reassortment event between human and pig RVA strains, and crossover points for recombination were identified at nucleotides (nt) 109-806 of NSP2. This is the first report of such a reassortant and recombinant RVA strain in the southwestern region of China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vlasova AN, Amimo JO, Saif LJ (2017) Porcine rotaviruses: epidemiology, immune responses and control strategies. Viruses. https://doi.org/10.3390/v9030048

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tate JE, Burton AH, Boschi-Pinto C, Parashar UD, World Health Organization-Coordinated Global Rotavirus Surveillance N (2016) Global, regional, and national estimates of rotavirus mortality in children <5 Years of Age, 2000-2013. Clin Infect Dis 62(Suppl 2):S96–S105. https://doi.org/10.1093/cid/civ1013

    Article  PubMed  Google Scholar 

  3. Theuns S, Desmarets LM, Heylen E, Zeller M, Dedeurwaerder A, Roukaerts ID, Van Ranst M, Matthijnssens J, Nauwynck HJ (2014) Porcine group A rotaviruses with heterogeneous VP7 and VP4 genotype combinations can be found together with enteric bacteria on Belgian swine farms. Vet Microbiol 172(1–2):23–34. https://doi.org/10.1016/j.vetmic.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  4. Jing Z, Zhang X, Shi H, Chen J, Shi D, Dong H, Feng L (2018) A G3P[13] porcine group A rotavirus emerging in China is a reassortant and a natural recombinant in the VP4 gene. Transbound Emerg Dis 65(2):e317–e328. https://doi.org/10.1111/tbed.12756

    Article  CAS  PubMed  Google Scholar 

  5. Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Banyai K, Brister JR, Buesa J, Esona MD, Estes MK, Gentsch JR, Iturriza-Gomara M, Johne R, Kirkwood CD, Martella V, Mertens PP, Nakagomi O, Parreno V, Rahman M, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Patton JT, Desselberger U, Van Ranst M (2011) Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol 156(8):1397–1413. https://doi.org/10.1007/s00705-011-1006-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tacharoenmuang R, Komoto S, Guntapong R, Ide T, Singchai P, Upachai S, Fukuda S, Yoshida Y, Murata T, Yoshikawa T, Ruchusatsawat K, Motomura K, Takeda N, Sangkitporn S, Taniguchi K (2018) Characterization of a G10P[14] rotavirus strain from a diarrheic child in Thailand: evidence for bovine-to-human zoonotic transmission. Infect Genet Evol 63:43–57. https://doi.org/10.1016/j.meegid.2018.05.009

    Article  CAS  PubMed  Google Scholar 

  7. Luchs A, Cilli A, Morillo SG, Carmona Rde C, Timenetsky Mdo C (2012) Rare G3P[3] rotavirus strain detected in Brazil: possible human-canine interspecies transmission. J Clin Virol 54(1):89–92. https://doi.org/10.1016/j.jcv.2012.01.025

    Article  CAS  PubMed  Google Scholar 

  8. Ianiro G, Di Bartolo I, De Sabato L, Pampiglione G, Ruggeri FM, Ostanello F (2017) Detection of uncommon G3P[3] rotavirus A (RVA) strain in rat possessing a human RVA-like VP6 and a novel NSP2 genotype. Infect Genet Evol 53:206–211. https://doi.org/10.1016/j.meegid.2017.06.008

    Article  CAS  PubMed  Google Scholar 

  9. Kikuchi W, Nakagomi T, Gauchan P, Agbemabiese CA, Noguchi A, Nakagomi O, Takahashi T (2018) Detection in Japan of an equine-like G3P[8] reassortant rotavirus A strain that is highly homologous to European strains across all genome segments. Arch Virol 163(3):791–794. https://doi.org/10.1007/s00705-017-3668-7

    Article  CAS  PubMed  Google Scholar 

  10. Navarro R, Aung MS, Cruz K, Ketzis J, Gallagher CA, Beierschmitt A, Malik YS, Kobayashi N, Ghosh S (2017) Whole genome analysis provides evidence for porcine-to-simian interspecies transmission of rotavirus-A. Infect Genet Evol 49:21–31. https://doi.org/10.1016/j.meegid.2016.12.026

    Article  CAS  PubMed  Google Scholar 

  11. Marthaler D, Suzuki T, Rossow K, Culhane M, Collins J, Goyal S, Tsunemitsu H, Ciarlet M, Matthijnssens J (2014) VP6 genetic diversity, reassortment, intragenic recombination and classification of rotavirus B in American and Japanese pigs. Vet Microbiol 172(3–4):359–366. https://doi.org/10.1016/j.vetmic.2014.05.015

    Article  CAS  PubMed  Google Scholar 

  12. Martinez-Laso J, Roman A, Rodriguez M, Cervera I, Head J, Rodriguez-Avial I, Picazo JJ (2009) Diversity of the G3 genes of human rotaviruses in isolates from Spain from 2004 to 2006: cross-species transmission and inter-genotype recombination generates alleles. J Gen Virol 90(Pt 4):935–943. https://doi.org/10.1099/vir.0.007807-0

    Article  CAS  PubMed  Google Scholar 

  13. Esona MD, Roy S, Rungsrisuriyachai K, Sanchez J, Vasquez L, Gomez V, Rios LA, Bowen MD, Vazquez M (2017) Characterization of a triple-recombinant, reassortant rotavirus strain from the Dominican Republic. J Gen Virol 98(2):134–142. https://doi.org/10.1099/jgv.0.000688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Donker NC, Boniface K, Kirkwood CD (2011) Phylogenetic analysis of rotavirus A NSP2 gene sequences and evidence of intragenic recombination. Infect Genet Evol 11(7):1602–1607. https://doi.org/10.1016/j.meegid.2011.05.024

    Article  CAS  PubMed  Google Scholar 

  15. Jere KC, Mlera L, O’Neill HG, Peenze I, van Dijk AA (2012) Whole genome sequence analyses of three African bovine rotaviruses reveal that they emerged through multiple reassortment events between rotaviruses from different mammalian species. Vet Microbiol 159(1–2):245–250. https://doi.org/10.1016/j.vetmic.2012.03.040

    Article  CAS  PubMed  Google Scholar 

  16. Maes P, Matthijnssens J, Rahman M, Van Ranst M (2009) RotaC: a web-based tool for the complete genome classification of group A rotaviruses. BMC Microbiol 9:238. https://doi.org/10.1186/1471-2180-9-238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar M, Jayaram H, Vasquez-Del Carpio R, Jiang X, Taraporewala ZF, Jacobson RH, Patton JT, Prasad BV (2007) Crystallographic and biochemical analysis of rotavirus NSP2 with nucleotides reveals a nucleoside diphosphate kinase-like activity. J Virol 81(22):12272–12284. https://doi.org/10.1128/JVI.00984-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Key Research Program of China (Grant No. 2017YFD0502200), the Program of Main Livestock Standardized Breeding Technology Research and Demonstration (Grant No. 2016NYZ0052), the Public Welfare Scientific Research Institutes Basic Research Projects (Grant No. SASA2017A07), the Transformation Fund of Scientific and Technological Achievements of Scientific Research Institutes in Sichuan Province (Grant No. 2018YSZH0005), and the Special Finance of Sichuan (Grant No. SASA2014CZYX009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Tim Skern.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 753 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Zhou, L., Tian, Y. et al. Genetic characterization of a novel G9P[23] rotavirus A strain identified in southwestern China with evidence of a reassortment event between human and porcine strains. Arch Virol 164, 1229–1232 (2019). https://doi.org/10.1007/s00705-019-04188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04188-y

Navigation