Skip to main content
Log in

Molecular characterization of a new botybirnavirus that infects Botrytis cinerea

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Eight different double-stranded RNA (dsRNA) molecules were found in the wild-type fungal strain Botrytis cinerea CCg427. The electrophoretic profile displayed molecules with approximate sizes of 1, 1.3, 1.6, 1.8, 3.3, 4.1, 6.5, and 12 kbp. Sequences analysis of the molecules in the 6.5-kbp band revealed the presence of two different dsRNA molecules (dsRNA-1 and dsRNA-2) of 6192 and 5567 bp. Each molecule contained a unique ORF (5487 and 4836 nucleotides in dsRNA-1 and dsRNA-2, respectively). The ORF of dsRNA-1 encodes a 205-kDa polypeptide that shares 58% amino acid sequence identity with the RNA-dependent RNA polymerase (RdRp) encoded by dsRNA-1 of Alternaria sp. SCFS-3 botybirnavirus (ABRV1), whereas the ORF of dsRNA-2 encodes a 180-kDa polypeptide that shares 52% amino acid sequence identity with an unclassified protein encoded by dsRNA-2 of ABRV1. Genome organization and phylogenetic analysis based on the amino acid sequences of RdRps in members of different dsRNA virus families showed that the dsRNAs in the 6.5-kbp band correspond to the genome of a new botybirnavirus that we have named “Botrytis cinerea botybirnavirus 1”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N (2015) 50-plus years of fungal viruses. Virology 479–480:356–368

    Article  CAS  PubMed  Google Scholar 

  2. Zhang R, Liu S, Chiba S et al (2014) A novel single-stranded RNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix, with similarity to hypo-like viruses. Front Microbiol 5:360

    PubMed  PubMed Central  Google Scholar 

  3. Suzuki N (2017) Frontiers in fungal virology. J Gen Plant Pathol 83:419–423

    Article  Google Scholar 

  4. Liu L, Wang Q, Cheng J, Fu Y, Jiang D, Xie J (2015) Molecular characterization of a bipartite double-stranded RNA virus and its satellite-like RNA co-infecting the phytopathogenic fungus Sclerotinia sclerotiorum. Front Microbiol 6:406

    PubMed  PubMed Central  Google Scholar 

  5. Ran H, Liu L, Li B, Chen J, Fu Y, Jiang D, Xie J (2016) Co-infection of a hypovirulent isolate of Sclerotinia sclerotiorum with a new botybirnavirus and a strain of a mitovirus. Virol J 13:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xiang J, Fu M, Hong N, Zhai L, Xiao F, Wang G (2017) Characterization of a novel botybirnavirus isolated from a phytopathogenic Alternaria fungus. Arch Virol 162:3907–3911

    Article  CAS  PubMed  Google Scholar 

  7. Wang H, Li C, Cai L, Fang S, Zheng L, Yan F, Zhang S, Liu Y (2018) The complete genomic sequence of a novel botybirnavirus isolated from a phytopathogenic Bipolaris maydis. Virus Genes 54:733–736

    Article  CAS  PubMed  Google Scholar 

  8. Wu M, Jin F, Zhang J, Yang L, Jiang D, Li G (2012) Characterization of a novel bipartite double-stranded RNA mycovirus conferring hypovirulence in the phytopathogenic fungus Botrytis porri. J Virol 86:6605–6619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Williamson B, Tudzynski B, Tudzynski P, van Kan JA (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561–580

    Article  CAS  PubMed  Google Scholar 

  10. Elad Y, Pertot I, Prado AMC, Stewart A (2016) Plant hosts of Botrytis spp. In: Fillinger S, Elad Y (eds) Botrytis—the fungus, the pathogen and its management in agricultural systems. Springer, Dordrecht, pp 415–458

    Google Scholar 

  11. Wu M, Zhang J, Yang L, Li G (2016) RNA mycoviruses and their role in Botrytis biology. In: Fillinger S, Elad Y (eds) Botrytis—the fungus, the pathogen and its management in agricultural systems. Springer, Dordrecht, pp 71–90

    Chapter  Google Scholar 

  12. Potgieter CA, Castillo A, Castro M, Cottet L, Morales A (2013) A wild-type Botrytis cinerea strain co-infected by double-stranded RNA mycoviruses presents hypovirulence-associated traits. Virol J 10:220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hao F, Ding T, Wu M, Zhang J, Yang L, Chen W, Li G (2018) Two novel hypovirulence-associated mycoviruses in the phytopathogenic fungus Botrytis cinerea: molecular characterization and suppression of infection cushion formation. Viruses 10:254

    Article  CAS  PubMed Central  Google Scholar 

  14. Hao F, Zhou Z, Wu M, Li G (2017) Molecular characterization of a novel endornavirus from the phytopathogenic fungus Botrytis cinerea. Arch Virol 162:313–316

    Article  CAS  PubMed  Google Scholar 

  15. Wu M, Zhang L, Li G, Jiang D, Ghabrial SA (2010) Genome characterization of a debilitation-associated mitovirus infecting the phytopathogenic fungus Botrytis cinerea. Virology 406:117–126

    Article  CAS  PubMed  Google Scholar 

  16. Hao F, Wu M, Li G (2018) Molecular characterization and geographic distribution of a mymonavirus in the population of Botrytis cinerea. Viruses 10:432

    Article  CAS  PubMed Central  Google Scholar 

  17. Donaire L, Rozas J, Ayllón MA (2016) Molecular characterization of Botrytis ourmia-like virus, a mycovirus close to the plant pathogenic genus Ourmiavirus. Virology 489:158–164

    Article  CAS  PubMed  Google Scholar 

  18. Castillo A, Cottet L, Castro M, Sepúlveda F (2011) Rapid isolation of mycoviral double-stranded RNA from Botrytis cinerea and Saccharomyces cerevisiae. Virol J 8:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vilches S, Castillo A (1997) A double-stranded RNA mycovirus in Botrytis cinerea. FEMS Microbiol Lett 155:125–130

    Article  CAS  PubMed  Google Scholar 

  20. Potgieter AC, Steele AD, van Dijk AA (2002) Cloning of complete genome sets of six dsRNA viruses using an improved cloning method for large dsRNA genes. J Gen Virol 83:2215–2223

    Article  CAS  PubMed  Google Scholar 

  21. Stucky BJ (2012) SeqTrace: a graphical tool for rapidly processing DNA sequencing chromatograms. J Biomol Tech 23:90–93

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wheeler DL, Church DM, Federhen S, Lash AE, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E, Tatusova TA, Wagner L (2003) Database resources of the National Center for Biotechnology. Nucleic Acids Res 31:28–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165

    Article  CAS  PubMed  Google Scholar 

  26. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by FONDECYT postdoctoral Project no. 3160278.

Funding

This work was financially supported by the National Commission for Scientific and Technological Research (CONICYT) through the postdoctoral Project no. 3160278.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Castillo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

In this study, the authors did not perform any experiments using human participants or animals.

Additional information

Handling Editor: Massimo Turina.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cottet, L., Potgieter, C.A., Castro, M.E. et al. Molecular characterization of a new botybirnavirus that infects Botrytis cinerea. Arch Virol 164, 1479–1483 (2019). https://doi.org/10.1007/s00705-019-04184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04184-2

Navigation