Skip to main content

Advertisement

Log in

Genetic characterization of low-pathogenic avian influenza viruses isolated on the Izumi plain in Japan: possible association of dynamic movements of wild birds with AIV evolution

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The Izumi plain in Kagoshima Prefecture, Japan, is an overwintering site of endangered cranes (hooded cranes and white-naped cranes) and of many other migratory birds (including wild ducks) that are considered carriers of avian influenza viruses (AIVs). To assess the risks of a highly pathogenic avian influenza outbreak in the crane populations, we tested various environmental samples for AIVs in this area. In the 2014–2015 winter season, we isolated one AIV of the H6N2 subtype from the cranes’ roost water and two AIVs of the H11N9 subtype from a crane fecal sample and a cloacal swab of a dead spot-billed duck. Genetic analysis of these AIV isolates indicated that our H6N2 isolate is genetically close to AIVs isolated from wild birds in Southeast Asian countries, except that the PB1 and NS genes belong to the North American virus lineage. All genes of the two H11N9 isolates are related to AIVs belonging to the Eurasian virus lineage. Notably, in our phylogenetic trees, H11 HA and N9 NA genes showing high sequence similarity to the corresponding genes of isolates from wild birds in South Africa and Spain, respectively, did not cluster in the major groups with recent wild-bird isolates from East Asia. These results suggest that AIVs with viral gene segments derived from various locations and bird species have been brought to the Izumi plain. These findings imply a possible association of dynamic movements of wild birds with AIV evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abed Y, Baz M, Boivin G (2006) Impact of neuraminidase mutations conferring influenza resistance to neuraminidase inhibitors in the N1 and N2 genetic backgrounds. Antivir Ther 11:971–976

    CAS  PubMed  Google Scholar 

  2. Aoki FY, Boivin G, Roberts N (2007) Influenza virus susceptibility and resistance to oseltamivir. Antivir Ther 12:603–616

    CAS  PubMed  Google Scholar 

  3. Berkower I, Smith GE, Giri C, Murphy D (1989) Human immunodeficiency virus 1. Predominance of a group-specific neutralizing epitope that persists despite genetic variation. J Exp Med 170:1681–1695

    Article  CAS  Google Scholar 

  4. Capua I, Alexander DJ (2004) Avian influenza: recent developments. Avian Pathol 33:393–404

    Article  Google Scholar 

  5. Downie JC, Laver WG (1973) Isolation of a type A influenza virus from an Australian pelagic bird. Virology 51:259–269

    Article  CAS  Google Scholar 

  6. Espeland MA, Murphy WC, Cox C, Billings RJ, Bouwsma OJ (1989) Rerandomization tests for analyzing correlated data from dental studies. Comput Biomed Res 22:1–10

    Article  CAS  Google Scholar 

  7. Gabriel G, Dauber B, Wolff T, Planz O, Klenk HD, Stech J (2005) The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci USA 102:18590–18595

    Article  CAS  Google Scholar 

  8. Hatta M, Gao P, Halfmann P, Kawaoka Y (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–1842

    Article  CAS  Google Scholar 

  9. Hay AJ, Zambon MC, Wolstenholme AJ, Skehel JJ, Smith MH (1986) Molecular basis of resistance of influenza A viruses to amantadine. J Antimicrob Chemother 18(Suppl B):19–29

    Article  CAS  Google Scholar 

  10. Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR (2001) Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146:2275–2289

    Article  CAS  Google Scholar 

  11. Lawlor BA, Sunderland T, Hill JL, Mellow AM, Molchan SE, Mueller EA, Jacobsen FM, Murphy DL (1989) Evidence for a decline with age in behavioral responsivity to the serotonin agonist, m-chlorophenylpiperazine, in healthy human subjects. Psychiatry Res 29:1–10

    Article  CAS  Google Scholar 

  12. Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster RG, Matsuoka Y, Yu K (2005) Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79:12058–12064

    Article  CAS  Google Scholar 

  13. Maeda Y, Tohya Y, Nakagami Y, Yamashita M, Sugimura T (2001) An occurrence of salmonella infection in cranes at the Izumi Plains, Japan. J Vet Med Sci 63:943–944

    Article  CAS  Google Scholar 

  14. Mehle A, Doudna JA (2009) Adaptive strategies of the influenza virus polymerase for replication in humans. Proc Natl Acad Sci USA 106:21312–21316

    Article  CAS  Google Scholar 

  15. Murphy GM, Dowd PM, Hudspith BN, Brostoff J, Greaves MW (1989) Local increase in interleukin-1-like activity following UVB irradiation of human skin in vivo. Photo Dermatol 6:268–274

    CAS  Google Scholar 

  16. Murphy M, Schenk P, Lankinen HM, Cross AM, Taylor P, Owsianka A, Hope RG, Ludwig H, Marsden HS (1989) Mapping of epitopes on the 65k DNA-binding protein of herpes simplex virus type 1. J Gen Virol 70(Pt 9):2357–2364

    Article  CAS  Google Scholar 

  17. Murphy TV, Majewski H (1989) Modulation of noradrenaline release in slices of rat kidney cortex through alpha 1- and alpha 2-adrenoceptors. Eur J Pharmacol 169:285–295

    Article  CAS  Google Scholar 

  18. Nera FA, Murphy EL, Gam A, Hanchard B, Figueroa JP, Blattner WA (1989) Antibodies to Strongyloides stercoralis in healthy Jamaican carriers of HTLV-1. N Engl J Med 320:252–253

    Article  CAS  Google Scholar 

  19. Okamatsu M, Ozawa M, Soda K, Takakuwa H, Haga A, Hiono T, Matsuu A, Uchida Y, Iwata R, Matsuno K, Kuwahara M, Yabuta T, Usui T, Ito H, Onuma M, Sakoda Y, Saito T, Otsuki K, Ito T, Kida H (2017) Characterization of Highly Pathogenic Avian Influenza Virus A(H5N6), Japan, November 2016. Emerg Infect Dis 23:691–695

    Article  Google Scholar 

  20. Okuya K, Kawabata T, Nagano K, Tsukiyama-Kohara K, Kusumoto I, Takase K, Ozawa M (2015) Isolation and characterization of influenza A viruses from environmental water at an overwintering site of migratory birds in Japan. Arch Virol 160:3037–3052

    Article  CAS  Google Scholar 

  21. Okuya K, Kanazawa N, Kanda T, Kuwahara M, Matsuu A, Horie M, Masatani T, Toda S, Ozawa M (2017) Genetic characterization of an avian H4N6 influenza virus isolated from the Izumi plain, Japan. Microbiol Immunol 61:513–518

    Article  CAS  Google Scholar 

  22. Ozawa M, Matsuu A, Tokorozaki K, Horie M, Masatani T, Nakagawa H, Okuya K, Kawabata T, Toda S (2015) Genetic diversity of highly pathogenic H5N8 avian influenza viruses at a single overwintering site of migratory birds in Japan, 2014/15. Euro Surveill 20:15–27

    Article  Google Scholar 

  23. Pinto LH, Holsinger LJ, Lamb RA (1992) Influenza virus M2 protein has ion channel activity. Cell 69:517–528

    Article  CAS  Google Scholar 

  24. Sakoda Y, Ito H, Uchida Y, Okamatsu M, Yamamoto N, Soda K, Nomura N, Kuribayashi S, Shichinohe S, Sunden Y, Umemura T, Usui T, Ozaki H, Yamaguchi T, Murase T, Ito T, Saito T, Takada A, Kida H (2012) Reintroduction of H5N1 highly pathogenic avian influenza virus by migratory water birds, causing poultry outbreaks in the 2010-2011 winter season in Japan. J Gen Virol 93:541–550

    Article  CAS  Google Scholar 

  25. Schmidt JD, Gibbons RP, Bartolucci A, Murphy GP (1989) Prognosis in stage D-1 prostate cancer relative to anatomic sites of nodal metastases. National Prostatic Cancer Treatment Group. Cancer 64:1743–1746

    Article  CAS  Google Scholar 

  26. Slemons RD, Johnson DC, Osborn JS, Hayes F (1974) Type-A influenza viruses isolated from wild free-flying ducks in California. Avian Dis 18:119–124

    Article  CAS  Google Scholar 

  27. Snyder MH, London WT, Maassab HF, Murphy BR (1989) Attenuation and phenotypic stability of influenza B/Texas/1/84 cold-adapted reassortant virus: studies in hamsters and chimpanzees. J Infect Dis 160:604–610

    Article  CAS  Google Scholar 

  28. Spackman E, Stallknecht DE, Slemons RD, Winker K, Suarez DL, Scott M, Swayne DE (2005) Phylogenetic analyses of type A influenza genes in natural reservoir species in North America reveals genetic variation. Virus Res 114:89–100

    Article  CAS  Google Scholar 

  29. Subbarao EK, London W, Murphy BR (1993) A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol 67:1761–1764

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Treanor JJ, Snyder MH, London WT, Murphy BR (1989) The B allele of the NS gene of avian influenza viruses, but not the A allele, attenuates a human influenza A virus for squirrel monkeys. Virology 171:1–9

    Article  CAS  Google Scholar 

  31. Wang MZ, Tai CY, Mendel DB (2002) Mechanism by which mutations at his274 alter sensitivity of influenza a virus n1 neuraminidase to oseltamivir carboxylate and zanamivir. Antimicrob Agents Chemother 46:3809–3816

    Article  CAS  Google Scholar 

  32. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamada S, Hatta M, Staker BL, Watanabe S, Imai M, Shinya K, Sakai-Tagawa Y, Ito M, Ozawa M, Watanabe T, Sakabe S, Li C, Kim JH, Myler PJ, Phan I, Raymond A, Smith E, Stacy R, Nidom CA, Lank SM, Wiseman RW, Bimber BN, O’Connor DH, Neumann G, Stewart LJ, Kawaoka Y (2010) Biological and structural characterization of a host-adapting amino acid in influenza virus. PLoS Pathog 6:e1001034

    Article  Google Scholar 

  35. Zohari S, Gyarmati P, Ejdersund A, Berglof U, Thoren P, Ehrenberg M, Czifra G, Belak S, Waldenstrom J, Olsen B, Berg M (2008) Phylogenetic analysis of the non-structural (NS) gene of influenza A viruses isolated from mallards in Northern Europe in 2005. Virol J 5:147

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Project of the NARO Bio-oriented Technology Research Advancement Institution (“Integration Research for Agriculture and Interdisciplinary Fields” and “R&D matching funds on the field for Knowledge Integration and Innovation”) and by a grant for the contracted research activity for crane conservation with the City of Izumi, Japan. This research was commissioned by the Kagoshima Crane Conservation Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ozawa.

Ethics declarations

Disclosure of potential conflicts of interest

The authors declare there are no conflicts of interest.

Research involving human participants and/or animals

This research did not involve human participants or animals.

Informed consent

This research did not involve human participants or animals.

Additional information

Handling Editor: Ayato Takada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakagawa, H., Okuya, K., Kawabata, T. et al. Genetic characterization of low-pathogenic avian influenza viruses isolated on the Izumi plain in Japan: possible association of dynamic movements of wild birds with AIV evolution. Arch Virol 163, 911–923 (2018). https://doi.org/10.1007/s00705-017-3698-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3698-1

Navigation