Skip to main content
Log in

Adaptation of tick-borne encephalitis virus from human brain to different cell cultures induces multiple genomic substitutions

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The C11-13 strain from the Siberian subtype of tick-borne encephalitis virus (TBEV) was isolated from human brain using pig embryo kidney (PEK), 293, and Neuro-2a cells. Analysis of the complete viral genome of the C11-13 variants during six passages in these cells revealed that the cell-adapted C11-13 variants had multiple amino acid substitutions as compared to TBEV from human brain. Seven out of eight amino acids substitutions in the high-replicating C11-13(PEK) variant mapped to non-structural proteins; 13 out of 14 substitutions in the well-replicating C11-13(293) variant, and all four substitutions in the low-replicating C11-13(Neuro-2a) variant were also localized in non-structural proteins, predominantly in the NS2a (2), NS3 (6) and NS5 (3) proteins. The substitutions NS2a1067 (Asn → Asp), NS2a1168(Leu → Val) in the N-terminus of NS2a and NS31745(His → Gln) in the helicase domain of NS3 were found in all selected variants. We postulate that multiple substitutions in the NS2a, NS3 and NS5 genes play a key role in adaptation of TBEV to different cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Beasley DW, Morin M, Lamb AR, Hayman E, Watts DM, Lee CK, Trent DW, Monath TP (2013) Adaptation of yellow fever virus17D to Vero cells is associated with mutations in structural and non-structural protein genes. Virus Res 176(1–2):280–284. doi:10.1016/j.virusres.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  2. Belikov SI, Kondratov IG, Potapova UV, Leonova GN (2014) The relationship between the structure of the tick-borne encephalitis virus strains and their pathogenic properties. PLoS One 9(4):e94946. doi:10.1371/journal.pone.0094946

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bollati M, Alvarez K, Assenberg R, Baronti C, Canard B, Cook S, Coutard B, Decroly E, de Lamballerie X, Gould EA, Grard G, Grimes JM, Hilgenfeld R, Jansson AM, Malet H, Mancini EJ, Mastrangelo E, Mattevi A, Milani M, Moureau G, Neyts J, Owens RJ, Ren J, Selisko B, Speroni S, Steuber H, Stuart DI, Unge T, Bolognesi M (2010) Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral Res 87(2):125–148. doi:10.1016/j.antiviral.2009.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chausov EV, Ternovoi VA, Protopopova EV, Kononova JV, Konovalova SN, Pershikova NL, Romanenko VN, Ivanova NV, Bolshakova NP, Moskvitina NS, Loktev VB (2010) Variability of the tick-borne encephalitis virus genome in the 5’ noncoding region derived from ticks Ixodes persulcatus and Ixodes pavlovskyi in Western Siberia. Vector Borne Zoonotic Dis 10:365–375

    Article  PubMed  Google Scholar 

  5. Chausov EV, Ternovoy VA, Protopopova EV, Konovalova SN, Kononova YuV, Tupota NL, Moskvitina NS, Romanenko VN, Ivanova NV, Bol’shakova NP, Leonova GN, Loktev VB (2011) Molecular Genetic Analysis of the Complete Genome of Tick-Borne Encephalitis Virus (Siberia Subtype): Modern Kolarovo-2008 Isolate. Problems of Particularly Dangerous Infections 4:44–48 (in Russian)

    Google Scholar 

  6. Ciota AT, Payne AF, Ngo KA, Kramer LD (2014) Consequences of in vitro host shift for St. Louis encephalitis virus. J Gen Virol 95(Pt 6):1281–1288. doi:10.1099/vir.0.063545-0

    Article  CAS  PubMed  Google Scholar 

  7. Ciota AT, Payne AF, Kramer LD (2015) West Nile virus adaptation to ixodid tick cells is associated with phenotypic trade-offs in primary hosts. Virology 482:128–132. doi:10.1016/j.virol.2015.03.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Fabritus L, Nougairède A, Aubry F, Gould EA, de Lamballerie X (2015) Attenuation of tick-borne encephalitis virus using large-scale random codon re-encoding. PLoS Pathog 11(3):e1004738. doi:10.1371/journal.ppat.1004738

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dzhivanian TI, Korolev MB, Karganova GG, Lisak VM, Kashtanova GM, Chuprinskaya MV (1988) Changes in host-dependent characteristics of tick-borne encephalitis virus upon its adaptation to ticks and re-adaptation to white mice. Vopr Virusol 33(5):582–595 (in Russian)

    Google Scholar 

  10. Ecker M, Allison SL, Meixner T, Heinz FX (1999) Sequences analysis and genetic classification of tick-born encephalitis viruses from Europe and Asia. J Gen Virol 80:179–185. doi:10.1099/0022-1317-80-1-179

    Article  CAS  PubMed  Google Scholar 

  11. Filippova NA (1985) Morphology and physiology. In: Fillipova NA (ed) Taiga tick Ixodes persulcatus Schulze (Acarina, Ixodidae): morphology, systematics, ecology, and medical significance. Nauka, Leningrad, pp 8–96 (in Russian)

    Google Scholar 

  12. Formanova P, Cerny J, Bolfiková BC, Valdes JJ, Kozlova I, Dzhioev Y, Ruzek D (2015) Full genome sequences and molecular characterization of tick-borne encephalitis virus strains isolated from human patients. Ticks Tick Borne Dis 6(1):38–46. doi:10.1016/j.ttbdis.2014.09.002

    Article  PubMed  Google Scholar 

  13. Gould EA, de Lamballerie X, Zanotto PM, Holmes EC (2003) Origins, evolution, and vector/host coadaptations within the genus Flavivirus. Adv Virus Res 59:277–314

    Article  CAS  PubMed  Google Scholar 

  14. Gritsun TS, Lashkevich VA, Gould EA (2003) Tick-born encephalitis. Antiviral Res 57:129–146

    Article  CAS  PubMed  Google Scholar 

  15. Hayes EB, Sejvar JJ, Zaki SR, Lanciotti RS, Bode AV, Campbell GL (2005) Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg Infect Dis 11:1174–1179. doi:10.3201/eid1108.050289b

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hapuarachchi HC, Chua RC, Shi Y, Thein TL, Lee LK, Lee KS, Lye DC, Ng LC, Leo YS (2015) Clinical outcome and genetic differences within a monophyletic dengue virus type 2 population. PLoS One 10(3):e0121696. doi:10.1371/journal.pone.0121696

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kaluzova M, Eleckova E, Zuffova E, Pastorek J, Kaluz S, Kozuch O, Labuda M (1994) Reverted virulence of attenuated tick-borne encephalitis virus mutant is not accompanied with the changes in deduced viral envelope protein amino acid sequence. Acta Virol 38:133–140

    CAS  PubMed  Google Scholar 

  18. Kramer LD, Styer LM, Ebel GD (2007) A global perspective on the epidemiology of West Nile Virus. Annu Rev Entomol 53:61–81. doi:10.1146/annurev.ento.53.103106.093258

    Article  Google Scholar 

  19. Mandl CW, Kroschewski H, Allison SL, Kofler R, Holzmann H, Meixner T, Heinz FX (2001) Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo. J Virol 75:5627–5637. doi:10.1128/JVI.75.12.5627-5637.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marra PP, Griffing SM, McLean RG (2003) West Nile virus and wild life health. Emerg Infect Dis 9:898–899. doi:10.1016/j.virol.2015.03.033

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mikryukova TP, Moskvitina NS, Kononova YV, Korobitsyn IG, Kartashov MY, Tyutenkov OY, Protopopova EV, Romanenko VN, Chausov EV, Gashkov SI, Konovalova SN, Moskvitin SS, Tupota NL, Sementsova AO, Ternovoi VA, Loktev VB (2014) Surveillance of tick-borne encephalitis virus in wild birds and ticks in Tomsk city and its suburbs (Western Siberia). Ticks Tick Borne Dis 5(2):145–151. doi:10.1016/j.ttbdis.2013.10.004

    Article  PubMed  Google Scholar 

  22. Mitzel DN, Best SM, Masnick MF, Porcella SF, Wolfinbarger JB, Bloom ME (2008) Identification of genetic determinants of a tick-borne flavivirus associated with host-specific adaptation and pathogenicity. Virology 381(2):268–376. doi:10.1016/j.virol.2008.08.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Romanova LIu, Gmyl AP, Dzhivanian TI, Bakhmutov DV, Lukashev AN, Gmyl LV, Rumyantsev AA, Burenkova LA, Lashkevich VA, Karganova GG (2007) Microevolution of tick-borne encephalitis virus in course of host alternation. Virology 362:75–84. doi:10.1016/j.virol.2006.12.013

    Article  CAS  PubMed  Google Scholar 

  24. Ruzek D, Gritsun TS, Forrester NL, Gould EA, Kopecky J, Golovchenko M, Rudenko N, Grubhoffer L (2008) Mutations in the NS2B and NS3 genes affect mouse neuroinvasiveness of a Western European field strain of tick-borne encephalitis virus. Virology 374(2):249–255. doi:10.1016/j.virol.2008.01.010

    Article  CAS  PubMed  Google Scholar 

  25. Takamatsu Y, Morita K, Hayasaka D (2015) A single amino acid substitution in the NS2A protein of Japanese encephalitis virus affects virus propagation in vitro but not in vivo. J Virol 89:6126–6130. doi:10.1128/JVI.00370-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Voßmann S, Wieseler J, Kerber R, Kümmerer BM (2015) A basic cluster in the N terminus of yellow fever virus NS2A contributes to infectious particle production. J Virol 89:4951–4965. doi:10.1128/JVI.03351-14

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Federal Target Program “Scientific Potential of Higher Schools”, and the Russian Fundamental Basic Investigation Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery B. Loktev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomareva, E.P., Ternovoi, V.A., Mikryukova, T.P. et al. Adaptation of tick-borne encephalitis virus from human brain to different cell cultures induces multiple genomic substitutions. Arch Virol 162, 3151–3156 (2017). https://doi.org/10.1007/s00705-017-3442-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3442-x

Keywords

Navigation