Skip to main content

Advertisement

Log in

Recombinant heat shock protein 78 enhances enterovirus 71 propagation in Vero cells and is induced in SK-N-SH cells during the infection

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Enterovirus 71 (EV71) is one of the major causative agents of hand, foot and mouth disease (HFMD), which mainly occurs in children. Children with EV71 infection can develop severe neurological diseases. Heat shock protein 78 (HSP78) facilitates proper protein folding during viral propagation and is induced during virus infection. Nevertheless, the role that HSP78 plays during EV71 infection is still unclear. In this study, recombinant HSP78 protein was expressed in a prokaryotic expression system and used for exploring the interaction between HSP78 and EV71 propagation. Detection using a mouse immune anti-HSP78 serum in ELISA and western blot demonstrated that the recombinant HSP78 antigen is highly immunogenic. Furthermore, the recombinant HSP78 protein was able to bind to EV71 VP1 and intensified the cytopathic effect and viral propagation during EV71 infection, while the immune serum had a counteractive effect. However, knockdown of the HSP78 gene in Vero cells before EV71 infection did not result in a reduced virus titer. In addition, HSP78 on the cell surface was upregulated in human neuroblastoma cells (SK-N-SH) infected with EV71.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ye X, Fan C, Ku Z, Zuo T, Kong L, Zhang C, Shi J, Liu Q, Chen T, Zhang Y et al (2016) Structural basis for recognition of human enterovirus 71 by a bivalent broadly neutralizing monoclonal antibody. PLoS Pathog 12(3):e1005454

    Article  PubMed  PubMed Central  Google Scholar 

  2. Caine EA, Moncla LH, Ronderos MD, Friedrich TC, Osorio JE (2016) A single mutation in the VP1 of enterovirus 71 is responsible for increased virulence and neurotropism in adult interferon-deficient mice. J Virol 90(19):8592–8604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xing W, Liao Q, Viboud C, Zhang J, Sun J, Wu JT, Chang Z, Liu F, Fang VJ, Zheng Y et al (2014) Hand, foot, and mouth disease in China, 2008-12: an epidemiological study. Lancet Infect Dis 14(4):308–318

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kim HJ, Hyeon JY, Hwang S, Lee YP, Lee SW, Yoo JS, Kang B, Ahn JB, Jeong YS, Lee JW (2016) Epidemiology and virologic investigation of human enterovirus 71 infection in the Republic of Korea from 2007 to 2012: a nationwide cross-sectional study. BMC Infect Dis 16(1):425

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lai CC, Jiang DS, Wu HM, Chen HH (2016) A dynamic model for the outbreaks of hand, foot, and mouth disease in Taiwan. Epidemiol Infect 144(7):1500–1511

    Article  PubMed  Google Scholar 

  6. Lim CT, Jiang L, Ma S, James L, Ang LW (2016) Basic reproduction number of coxsackievirus type A6 and A16 and enterovirus 71: estimates from outbreaks of hand, foot and mouth disease in Singapore, a tropical city-state. Epidemiol Infect 144(5):1028–1034

    Article  CAS  PubMed  Google Scholar 

  7. Huang Y, Zhou Y, Lu H, Yang H, Feng Q, Dai Y, Chen L, Yu S, Yao X, Zhang H et al (2015) Characterization of severe hand, foot, and mouth disease in Shenzhen, China, 2009–2013. J Med Virol 87(9):1471–1479

    Article  PubMed  Google Scholar 

  8. Yang B, Lau EH, Wu P, Cowling BJ (2016) Transmission of hand, foot and mouth disease and its potential driving factors in Hong Kong. Sci Rep 6:27500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Onozuka D, Hashizume M (2011) The influence of temperature and humidity on the incidence of hand, foot, and mouth disease in Japan. Sci Total Environ 410–411:119–125

    Article  PubMed  Google Scholar 

  10. Ling BP, Jalilian FA, Harmal NS, Yubbu P, Sekawi Z (2014) Detection and characterization of viruses causing hand, foot and mouth disease from children in Seri Kembangan, Malaysia. Trop Biomed 31(4):654–662

    PubMed  Google Scholar 

  11. Donato C, le Hoi T, Hoa NT, Hoa TM, Van Duyet L, Dieu Ngan TT, Van Kinh N, Vu Trung N, Vijaykrishna D (2012) Genetic characterization of enterovirus 71 strains circulating in Vietnam in 2012. Virology 495:1–9

    Article  Google Scholar 

  12. Ham H, Woolery AR, Tracy C, Stenesen D, Kramer H, Orth K (2014) Unfolded protein response-regulated Drosophila Fic (dFic) protein reversibly AMPylates BiP chaperone during endoplasmic reticulum homeostasis. J Biol Chem 289(52):36059–36069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reid SP, Shurtleff AC, Costantino JA, Tritsch SR, Retterer C, Spurgers KB, Bavari S (2014) HSPA5 is an essential host factor for Ebola virus infection. Antiviral Res 109:171–174

    Article  PubMed  Google Scholar 

  14. Gonzalez-Gronow M, Gomez CF, de Ridder GG, Ray R, Pizzo SV (2014) Binding of tissue-type plasminogen activator to the glucose-regulated protein 78 (GRP78) modulates plasminogen activation and promotes human neuroblastoma cell proliferation in vitro. J Biol Chem 289(36):25166–25176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roberts JL, Tavallai M, Nourbakhsh A, Fidanza A, Cruz-Luna T, Smith E, Siembida P, Plamondon P, Cycon KA, Doern CD et al (2015) GRP78/Dna K is a target for Nexavar/Stivarga/Votrient in the treatment of human malignancies, viral infections and bacterial diseases. J Cell Physiol 230(10):2552–2578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moreno JA, Tiffany-Castiglioni E (2015) The chaperone Grp78 in protein folding disorders of the nervous system. Neurochem Res 40(2):329–335

    Article  CAS  PubMed  Google Scholar 

  17. Chen WT, Zhu G, Pfaffenbach K, Kanel G, Stiles B, Lee AS (2014) GRP78 as a regulator of liver steatosis and cancer progression mediated by loss of the tumor suppressor PTEN. Oncogene 33(42):4997–5005

    Article  CAS  PubMed  Google Scholar 

  18. Triantafilou K, Fradelizi D, Wilson K, Triantafilou M (2002) GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J Virol 76(2):633–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gonzalez-Gronow M, Selim MA, Papalas J, Pizzo SV (2009) GRP78: a multifunctional receptor on the cell surface. Antioxid Redox Signal 11(9):2299–2306

    Article  CAS  PubMed  Google Scholar 

  20. Wu YP, Chang CM, Hung CY, Tsai MC, Schuyler SC, Wang RY (2011) Japanese encephalitis virus co-opts the ER-stress response protein GRP78 for viral infectivity. Virol J 8:128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang L, Mei M, Qin A, Ye J, Qian K, Shao H (2016) Membrane-associated GRP78 helps subgroup J avian leucosis virus enter cells. Vet Res 47(1):92

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alayli F, Scholle F (2016) Dengue virus NS1 enhances viral replication and pro-inflammatory cytokine production in human dendritic cells. Virology 496:227–236

    Article  CAS  PubMed  Google Scholar 

  23. Shi-Chen OuD, Lee SB, Chu CS, Chang LH, Chung BC, Juan LJ (2011) Transcriptional activation of endoplasmic reticulum chaperone GRP78 by HCMV IE1-72 protein. Cell Res 21(4):642–653

    Article  Google Scholar 

  24. Wei D, Li NL, Zeng Y, Liu B, Kumthip K, Wang TT, Huo D, Ingels JF, Lu L, Shang J et al (2016) The molecular chaperone GRP78 contributes to Toll-like receptor 3-mediated innate immune response to hepatitis C virus in hepatocytes. J Biol Chem 291(23):12294–12309

    Article  CAS  PubMed  Google Scholar 

  25. Medigeshi GR, Lancaster AM, Hirsch AJ, Briese T, Lipkin WI, Defilippis V, Fruh K, Mason PW, Nikolich-Zugich J, Nelson JA (2007) West Nile virus infection activates the unfolded protein response, leading to CHOP induction and apoptosis. J Virol 81(20):10849–10860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jheng JR, Wang SC, Jheng CR, Horng JT (2016) Enterovirus 71 induces dsRNA/PKR-dependent cytoplasmic redistribution of GRP78/BiP to promote viral replication. Emerg Microbes Infect 5:e23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Niu R, Chen X (2016) Full-length cDNA, prokaryotic expression, and antimicrobial activity of UuHb-F-I from Urechis unicinctus. Biomed Res Int 2016:5683026

    PubMed  PubMed Central  Google Scholar 

  28. Illiano E, Demurtas OC, Massa S, Di Bonito P, Consalvi V, Chiaraluce R, Zanotto C, De Giuli Morghen C, Radaelli A, Venuti A et al (2016) Production of functional, stable, unmutated recombinant human papillomavirus E6 oncoprotein: implications for HPV-tumor diagnosis and therapy. J Transl Med 14(1):224

    Article  PubMed  PubMed Central  Google Scholar 

  29. Przybylski M, Borysowski J, Jakubowska-Zahorska R, Weber-Dabrowska B, Gorski A (2015) T4 bacteriophage-mediated inhibition of adsorption and replication of human adenovirus in vitro. Future Microbiol 10(4):453–460

    Article  CAS  PubMed  Google Scholar 

  30. Tang WF, Huang RT, Chien KY, Huang JY, Lau KS, Jheng JR, Chiu CH, Wu TY, Chen CY, Horng JT (2016) Host microRNA miR-197 plays a negative regulatory role in the enterovirus 71 infectious cycle by targeting the RAN protein. J Virol 90(3):1424–1438

    Article  CAS  PubMed Central  Google Scholar 

  31. White J, Hughes-Stamm S, Gangitano D (2015) Development and validation of a rapid PCR method for the PowerPlex(R) 16 HS system for forensic DNA identification. Int J Legal Med 129(4):715–723

    Article  PubMed  Google Scholar 

  32. Kono N, Nakamura H, Ito Y, Tomita M, Arakawa K (2016) Evaluation of the impact of RNA preservation methods of spiders for de novo transcriptome assembly. Mol Ecol Resour 16(3):662–672

    Article  CAS  PubMed  Google Scholar 

  33. Verma SK, Batra L, Tuteja U (2016) A recombinant trivalent fusion protein F1-LcrV-HSP70(II) augments humoral and cellular immune responses and imparts full protection against Yersinia pestis. Front Microbiol 7(1053):1–10

    Google Scholar 

  34. Chervyakova OV, Zaitsev VL, Iskakov BK, Tailakova ET, Strochkov VM, Sultankulova KT, Sandybayev NT, Stanbekova GE, Beisenov DK, Abduraimov YO et al (2016) Recombinant sheep pox virus proteins elicit neutralizing antibodies. Viruses 8(159):1–13

  35. Wang J, Zhong M, Liu B, Sha L, Lun Y, Zhang W, Li X, Wang X, Cao J, Ning A et al (2015) Expression and functional analysis of novel molecule—latcripin-13 domain from Lentinula edodes C91-3 produced in prokaryotic expression system. Gene 555(2):469–475

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Lin Z, Zhao M, Xu T, Wang C, Hua L, Wang H, Xia H, Zhu B (2016) Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 influenza virus through ROS-mediated signaling pathways. ACS Appl Mater Interfaces 8(37):24385–24393

    Article  CAS  PubMed  Google Scholar 

  37. Lin H, Chen Y, Huang Q, Guo X, Liu P, Liu W, Zhang C, Cao H, Hu G (2016) Prokaryotic expression of the chicken xanthine oxidase (XOD) subunit and its localization in liver and kidney. Int J Biol Macromol 87:341–347

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Lin Z, Zhao M, Xu T, Wang C, Xia H, Wang H, Zhu B (2016) Multifunctional selenium nanoparticles as carriers of HSP70 siRNA to induce apoptosis of HepG2 cells. Int J Nanomed 11:3065–3076

    Article  CAS  Google Scholar 

  39. Wang L, Yang S, Zhao K, Han L (2015) Expression profiles of the heat shock protein 70 gene in response to heat stress in Agrotis c-nigrum (Lepidoptera: Noctuidae). J Insect Sci 15:169

    CAS  PubMed  Google Scholar 

  40. Ganguly A, Malabadi RB, Das D, Suresh MR, Sunwoo HH (2013) Enhanced prokaryotic expression of dengue virus envelope protein. J Pharm Pharm Sci 16(4):609–621

    Article  PubMed  Google Scholar 

  41. Fu X, Li N, Lin Q, Guo H, Liu L, Huang Z, Wu S (2015) Early protein ORF086 is an effective vaccine candidate for infectious spleen and kidney necrosis virus in mandarin fish Siniperca chuatsi. Fish Shellfish Immunol 46(2):200–205

    Article  CAS  PubMed  Google Scholar 

  42. Ali A, Nisar M, Idrees M, Rafique S, Iqbal M (2015) Expression of Hepatitis C Virus Core and E2 antigenic recombinant proteins and their use for development of diagnostic assays. Int J Infect Dis 34:84–89

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Wang Z, Zhan Y, Gong Q, Yu W, Deng Z, Wang A, Yang Y, Wang N (2016) Generation of E. coli-derived virus-like particles of porcine circovirus type 2 and their use in an indirect IgG enzyme-linked immunosorbent assay. Arch Virol 161(6):1485–1491

    Article  CAS  PubMed  Google Scholar 

  44. Yu HC, Lai PH, Lai NS, Huang HB, Koo M, Lu MC (2016) Increased serum levels of anti-carbamylated 78-kDa glucose-regulated protein antibody in patients with rheumatoid arthritis. Int J Mol Sci 17(9)

  45. Li L, Zheng Q, Zhang Y, Li P, Fu Y, Hou J, Xiao X (2016) Antiviral activity of recombinant porcine surfactant protein A against porcine reproductive and respiratory syndrome virus in vitro. Arch Virol 161(7):1883–1890

    Article  CAS  PubMed  Google Scholar 

  46. Su PY, Wang YF, Huang SW, Lo YC, Wang YH, Wu SR, Shieh DB, Chen SH, Wang JR, Lai MD et al (2015) Cell surface nucleolin facilitates enterovirus 71 binding and infection. J Virol 89(8):4527–4538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang X, Zheng Z, Shu B, Liu X, Zhang Z, Liu Y, Bai B, Hu Q, Mao P, Wang H (2013) Human astrocytic cells support persistent coxsackievirus B3 infection. J Virol 87(22):12407–12421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shih SR, Weng KF, Stollar V, Li ML (2008) Viral protein synthesis is required for Enterovirus 71 to induce apoptosis in human glioblastoma cells. J Neurovirol 14(1):53–61

    Article  CAS  PubMed  Google Scholar 

  49. Beck MA, Chapman NM, McManus BM, Mullican JC, Tracy S (1990) Secondary enterovirus infection in the murine model of myocarditis. Pathologic and immunologic aspects. Am J Pathol 136(3):669–681

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wong WR, Chen YY, Yang SM, Chen YL, Horng JT (2005) Phosphorylation of PI3K/Akt and MAPK/ERK in an early entry step of enterovirus 71. Life Sci 78(1):82–90

    Article  CAS  PubMed  Google Scholar 

  51. Jiang L, Fantoni G, Couzens L, Gao J, Plant E, Ye Z, Eichelberger MC, Wan H (2016) Comparative efficacy of monoclonal antibodies that bind to different epitopes of the 2009 pandemic H1N1 influenza virus neuraminidase. J Virol 90(1):117–128

    Article  CAS  Google Scholar 

  52. Wan H, Yang H, Shore DA, Garten RJ, Couzens L, Gao J, Jiang L, Carney PJ, Villanueva J, Stevens J et al (2015) Structural characterization of a protective epitope spanning A(H1N1)pdm09 influenza virus neuraminidase monomers. Nat Commun 6:6114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu B, Li Y, Lin Z, Zhao M, Xu T, Wang C, Deng N (2016) Silver nanoparticles induce HePG-2 cells apoptosis through ROS-mediated signaling pathways. Nanoscale Res Lett 11(1):198

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jheng JR, Lau KS, Tang WF, Wu MS, Horng JT (2010) Endoplasmic reticulum stress is induced and modulated by enterovirus 71. Cell Microbiol 12(6):796–813

    Article  CAS  PubMed  Google Scholar 

  55. Ong KC, Wong KT (2015) Understanding enterovirus 71 neuropathogenesis and its impact on other neurotropic enteroviruses. Brain Pathol 25(5):614–624

    Article  CAS  PubMed  Google Scholar 

  56. Hsu WM, Hsieh FJ, Jeng YM, Kuo ML, Tsao PN, Lee H, Lin MT, Lai HS, Chen CN, Lai DM et al (2005) GRP78 expression correlates with histologic differentiation and favorable prognosis in neuroblastic tumors. Int J Cancer 113(6):920–927

    Article  CAS  PubMed  Google Scholar 

  57. Weinreb I, Goldstein D, Irish J, Perez-Ordonez B (2009) Expression patterns of Trk-A, Trk-B, GRP78, and p75NRT in olfactory neuroblastoma. Hum Pathol 40(9):1330–1335

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Deng.

Ethics declarations

Ethics approval and consent to participate

Mouse experiments were approved by the Ethics Committee of Guangzhou Medical University and performed according to the protocols and guidelines of the Experimental Animal Center of Guangzhou Medical University.

Conflict of interest

The authors declare that they have no competing interests.

Funding

This work was supported by the Technology Planning Project of Guangzhou (No. 201607010120), the Guangzhou Medical Health Science and Technology Project (No. 20161A010033), the Technology Planning Projects of Guangdong Province (No. 2014A020212697), and the China Postdoctoral Science Foundation (No. 2015M582366).

Authors’ contributions

ND and BZ designed the study. ND supervised the whole work and revised the manuscript. BZ, TX, ZL, YL, CW and MZ carried out the experiments. BZ and TX analyzed the data and drafted the manuscript. BZ and LH revised the manuscript. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Xu, T., Lin, Z. et al. Recombinant heat shock protein 78 enhances enterovirus 71 propagation in Vero cells and is induced in SK-N-SH cells during the infection. Arch Virol 162, 1649–1660 (2017). https://doi.org/10.1007/s00705-017-3287-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3287-3

Keywords

Navigation