Skip to main content

Advertisement

Log in

Genetic variability and evolution of broad bean wilt virus 1: role of recombination, selection and gene flow

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Analysis of four genomic regions from 37 geographically diverse isolates of broad bean wilt virus 1 (BBWV-1) showed high genetic diversity in comparison to most plant viruses. Comparison of synonymous and nonsynonymous substitutions of the small coat protein gene (SCP) revealed negative selection for most amino acid positions. Phylogenetic analysis of SCP showed that some BBWV-1 isolates from distant geographical areas were genetically close, suggesting long-distance migration. Analysis of genetic differentiation revealed high gene flow between Spanish and Near Eastern subpopulations, which were separated from North-Central and South-Eastern European subpopulations. Finally, putative recombinant and reassortant genomes were also identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Chare ER, Holmes EC (2006) A phylogenetic survey of recombination frequency in plant RNA viruses. Arch Virol 151:933–946

    Article  PubMed  CAS  Google Scholar 

  2. Davino S, Panno S, Rangel EA, Davino M, Bellardi MG, Rubio L (2012) Population genetics of cucumber mosaic virus infecting medicinal, aromatic and ornamental plants from northern Italy. Arch Virol 157:1–7

    Article  CAS  Google Scholar 

  3. Davino S, Rubio L, Davino M (2005) Molecular analysis suggests that recent Citrus tristeza virus outbreaks in Italy were originated by at least two independent introductions. Eur J Plant Pathol 111:289–293

    Article  CAS  Google Scholar 

  4. Davino S, Willemsen A, Panno S, Davino M, Catara A, Elena SF, Rubio L (2013) Emergence and phylodynamics of Citrus tristeza virus in Sicily, Italy. PLOS One 8:e66700

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Ferrer RM, Luis-Arteaga M, Guerri J, Moreno P, Rubio L (2007) Detection and identification of species of the genus Fabavirus by RT-PCR with a single pair of primers. J Virol Methods 144:156–160

    Article  PubMed  CAS  Google Scholar 

  6. Ferrer RM, Guerri J, Luis-Arteaga MS, Moreno P, Rubio L (2005) The complete sequence of a Spanish isolate of Broad bean wilt virus 1 (BBWV-1) reveals a high variability and conserved motifs in the genus Fabavirus. Arch Virol 150:2109–2116

    Article  PubMed  CAS  Google Scholar 

  7. Ferrer R, Escriu F, Luis-Arteaga M, Guerri J, Moreno P, Rubio L (2008) New molecular methods for identification of Broad bean wilt virus 1. Mol Cell Probes 22:223–227

    Article  PubMed  CAS  Google Scholar 

  8. Ferrer RM, Ferriol I, Moreno P, Guerri J, Rubio L (2011) Genetic variation and evolutionary analysis of Broad bean wilt virus 2. Arch Virol 156:1445–1450

    Article  PubMed  CAS  Google Scholar 

  9. Fraile A, Alonso-Prados JL, Aranda MA, Bernal JJ, Malpica JM, Garcia-Arenal F (1997) Genetic exchange by recombination or reassortment is infrequent in natural populations of a tripartite RNA plant virus. J Virol 71:934–940

    PubMed Central  PubMed  CAS  Google Scholar 

  10. García-Arenal F, Fraile A, Malpica JM (2001) Variability and genetic structure of plant virus populations. Annu Rev Phytopathol 39:157–186

    Article  PubMed  Google Scholar 

  11. Gómez P, Sempere RN, Elena SF, Aranda MA (2009) Mixed infections of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus. J Virol 83:12378–12387

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  13. Kobayashi YO, Kobayashi A, Nakano M, Hagiwara K, Honda Y, Omura T (2003) Analysis of genetic relations between Broad bean wilt virus 1 and Broad bean wilt virus 2. J Gen Plant Pathol 69:320–326

    Article  CAS  Google Scholar 

  14. Kobayashi Y, Nakano M, Kashiwazaki S, Naito T, Mikoshiba Y, Shiota A, Kameya-Iwaki M, Honda Y (1999) Sequence analysis of RNA-2 of different isolates of Broad bean wilt virus confirms the existence of two distinct species. Arch Virol 144:1429–1438

    Article  PubMed  CAS  Google Scholar 

  15. Kosakovsky Pond SL, Frost SDW (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533

    Article  CAS  Google Scholar 

  16. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Lai M (1998) Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology 244:1–12

    Article  PubMed  CAS  Google Scholar 

  18. Li WH (1993) Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol 36:96–99

    Article  PubMed  CAS  Google Scholar 

  19. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  20. Lisa V, Boccardo G (1996) Fabaviruses: broad bean wilt virus and allied viruses. In: Harrison BH, Murant AF (eds) The plant viruses: polyhedral virions and bipartite RNA genomes, vol 5. Plenum Press, NewYork, pp 229–250

    Chapter  Google Scholar 

  21. López C, Aramburu J, Galipienso L, Soler S, Nuez F, Rubio L (2011) Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. J Gen Virol 92:210–215

    Article  PubMed  CAS  Google Scholar 

  22. Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Martín S, Sambade A, Rubio L, Vives MC, Moya P, Guerri J, Elena SF, Moreno P (2009) Contribution of recombination and selection to molecular evolution of Citrus tristeza virus. J Gen Virol 90:1527

    Article  PubMed  CAS  Google Scholar 

  24. Martín S, Garcia ML, Troisi A, Rubio L, Legarreta G, Grau O, Alioto D, Moreno P, Guerri J (2006) Genetic variation of populations of Citrus psorosis virus. J Gen Virol 87:3097

    Article  PubMed  CAS  Google Scholar 

  25. Nagy PD (2008) Recombination in plant RNA viruses. In: Roossinck MJ (ed) Plant virus evolution. Springer, Berlin, pp 133–164

    Chapter  Google Scholar 

  26. Oliver J, Vigne E, Fuchs M (2010) Genetic structure and molecular variability of Grapevine fanleaf virus populations. Virus Res 152:30–40

    Article  PubMed  CAS  Google Scholar 

  27. Pagán I, del Carmen Córdoba-Sellés M, Martínez-Priego L, Fraile A, Malpica JM, Jordá C, García-Arenal F (2006) Genetic structure of the population of Pepino mosaic virus infecting tomato crops in Spain. Phytopathology 96:274–279

    Article  PubMed  CAS  Google Scholar 

  28. Pamilo P, Bianchi NO (1993) Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. Mol Biol Evol 10:271–281

    PubMed  CAS  Google Scholar 

  29. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  30. Rangel E, Alfaro-Fernández A, Font-San-Ambrosio M, Luis-Arteaga M, Rubio L (2011) Genetic variability and evolutionary analyses of the coat protein gene of Tomato mosaic virus. Virus Genes 43:435–438

    Article  PubMed  CAS  Google Scholar 

  31. Roossinck MJ (2002) Evolutionary history of Cucumber mosaic virus deduced by phylogenetic analyses. J Virol 76:3382–3387

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Rubio L, Guerri J, Moreno P (2013) Genetic variability and evolutionary dynamics of viruses of the family Closteroviridae. Front Microbiol 4:151

    Article  PubMed Central  PubMed  Google Scholar 

  33. Sanfaçon H, Iwanami T, Karasev AV, van der Vlugt R, Wellink J, Wetzel T, Yoshikawa N (2012) Family Secoviridae. In: King AMQ, Adams MJ, Carsyens EB, Lefkowitz EJ (eds) Virus taxonomy, ninth report of the international committee on taxonomy of viruses. Elsevier Academic Press, London, pp 881–899

    Google Scholar 

  34. Tárraga J, Medina I, Arbiza L, Huerta-Cepas J, Gabaldón T, Dopazo J, Dopazo H (2007) Phylemon: a suite of web tools for molecular evolution, phylogenetics and phylogenomics. Nucleic Acids Res 35:W38–W42

    Article  PubMed Central  PubMed  Google Scholar 

  35. Wei TY, Yang JG, Liao FL, Gao FL, Lu LM, Zhang XT, Li F, Wu ZJ, Lin QY, Xie LH (2009) Genetic diversity and population structure of rice stripe virus in China. J Gen Virol 90:1025–1034

    Article  PubMed  CAS  Google Scholar 

  36. Zhang C, Gu H, Ghabrial SA (2007) Molecular characterization of naturally occurring RNA1 recombinants of the comovirus Bean pod mottle virus. Phytopathology 97:1255–1262

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants RTA04-004-C2, co-financed by FEDER and the Spanish Ministerio de Educación y Ciencia, and by grant ACOMP07-277 from the Generalitat Valenciana. The first and second authors were recipients of predoctoral fellowships from INIA and IVIA, respectively. We thank Drs. Aramburu, Červená, Falk, Kostova, Lesemann, Milne, Ochoa-Corona, Vetten and Yordanova for generously providing BBWV-1 isolates; and M. Boils and D. Comin for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Rubio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferriol, I., Ferrer, R.M., Luis-Arteaga, M. et al. Genetic variability and evolution of broad bean wilt virus 1: role of recombination, selection and gene flow. Arch Virol 159, 779–784 (2014). https://doi.org/10.1007/s00705-013-1868-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1868-3

Keywords

Navigation