Skip to main content
Log in

Characterization of a novel chitinase, DkChi, from Dendrolimus kikuchii nucleopolyhedrovirus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Dendrolimus kikuchii Matsumura nucleopolyhedrovirus (DkNPV) is a novel nucleopolyhedrovirus strain that has exhibited high potential as biological control agent against D. kikuchii. In this work, a 1755-bp DkChi gene with sequence homology to a chitinase gene was cloned from the genomic DNA of DkNPV using a DNA fragment library. The DkChi gene, encoding 558 residues protein with a predicted mass of 61.6 kDa, was expressed at high levels in Escherichia coli and purified by affinity chromatography. We confirmed that the prepared protein was the DkChi protein by mass spectrometry analysis. Enzyme activity analysis showed that DkChi had both endo- and exo-chitinase activities. Interestingly, the DkChi protein displayed a strong insecticidal activity against Spodoptera exigua, Hyphantria cunea, Helicoverpa armigera and Lymantria dispar. The results suggest that DkChi is a good candidate protein for significantly contributing to pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kramer KJ, Muthukrishnan S (2005) Chitin metabolism in insects. In: Gilbert LI, Iatrou K, Gill S (eds) Comprehensive molecular insect science. Elsevier, Oxford, pp 111–144

  2. Cohen-Kupiec R, Chet I (1998) The molecular biology of chitin digestion. Curr Opin Biotechnol 9:270–277

    Article  PubMed  CAS  Google Scholar 

  3. Kasprzewska A (2003) Plant chitinases-regulation and function. Cell Mol Biol Lett 8:809–824

    PubMed  CAS  Google Scholar 

  4. Sharma N, Sharma KP, Gaur RK, Gupta VK (2011) Role of chitinase in plant defense. Asian J Biochem 6:29–37

    Article  CAS  Google Scholar 

  5. McCreath KJ, Gooday GW (1992) A rapid and sensitive microassay for determination of chitinolytic activity. J Microbiol Methods 14:229–237

    Article  CAS  Google Scholar 

  6. Brurberg MB, Synstad B, Klemsdal SS, van Aalten DMF, Sundheim L, Eijsink VGH (2001) Chitinases from Serratia marcescens. Recent Res Dev Microbiol 5:187–204

    CAS  Google Scholar 

  7. Tews I, Vincentelli R, Vorgias CE (1996) N-Acetylglucosaminidase (chitobiase) from Serratia marcescens: gene sequence, and protein production and purification in Escherichia coli. Gene 170:63–67

    Article  PubMed  CAS  Google Scholar 

  8. Tews I, Perrakis A, Oppenheim A, Dauter Z, Wilsion KS, Vorgias CE (1996) Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease. Nat Struct Biol 3:638–648

    Article  PubMed  CAS  Google Scholar 

  9. Williams SJ, Mark BL, Vocadlo DJ, James MN, Withers SG (2002) Aspartate 313 in the Streptomyces plicatus hexosaminidase plays a critical role in substrate-assisted catalysis by orienting the 2-acetamido group and stabilizing the transition state. J Biol Chem 277:40055–40065

    Article  PubMed  CAS  Google Scholar 

  10. Wang H, Wu D, Deng F, Peng H, Chen X, Lauzon H, Arif BM, Jehle JA, Hu Z (2004) Characterization and phylogenetic analysis of the chitinase gene from the Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus. Virus Res 100:179–189

    Article  PubMed  CAS  Google Scholar 

  11. Hawtin RE, Arnold K, Ayres MD, Zanotto PM, Howard SC, Gooday GA, Chappell LH, Kitts PA, King LA, Possee RD (1995) Identification and preliminary characherization of a chitinase gene in the Autographa californica nuclear polyhedrosis virus genome. Virology 212:673–685

    Article  PubMed  CAS  Google Scholar 

  12. Hawtin RE, Zarkowska T, Arnold K, Thomas CJ, Gooday GW, King LA, Kuzio JA, Possee RD (1997) Liquefaction of Autographa californica nucleopolyhedrovirus infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology 238:243–253

    Article  PubMed  CAS  Google Scholar 

  13. Thomas CJ, Brown HL, Hawes CR, Lee BY, Min M, King LA, Possee RD (1998) Localization of a baculovirus-induced chitinase in the insect cell endoplasmic reticulum. J Virol 72:10207–10212

    PubMed  CAS  Google Scholar 

  14. Saville GP, Thomas CJ, Possee RD, King LA (2002) Partial redistribution of the Autographa californica nucleopolyhedrovirus chitinase in virus-infected cells accompanies mutation of the carboxy-terminal KDEL ER-retention motif. J Gen Virol 83:685–694

    PubMed  Google Scholar 

  15. Saville GP, Patmanidi AL, Possee RD, King LA (2004) Deletion of the Autographa californica nucleopolyhedrovirus chitinase KDEL motif and in vitro and in vivo analysis of the modified virus. J Gen Virol 85:821–831

    Article  PubMed  CAS  Google Scholar 

  16. Rao R, Fiandra L, Giordana B, de Eguileor M, Congiu T, Burlini N, Arciello S, Corrado G, Pennacchio F (2004) AcMNPV ChiA protein disrupts the peritrophic membrane and alters midgut physiology of Bombyx mori larvae. Insect Biochem Mol Biol 34:1205–1213

    Article  PubMed  CAS  Google Scholar 

  17. Wang F, Zhang C, Shyam Kumar V, Wu X (2005) Influences of chitinase gene deletion from BmNPV on the cell lysis and host liquefaction. Arch Virol 150:981–990

    Article  PubMed  CAS  Google Scholar 

  18. Ohkawa T, Majima K, Maeda S (1994) A cysteine protease encoded by the baculovirus Bombyx mori nuclear polyhedrosis virus. J Virol 68:6619–6625

    PubMed  CAS  Google Scholar 

  19. Hom LG, Volkman LE (2000) Autographa californica M nucleopolyhedrovirus chiA is required for processing of V-CATH. Virology 277:178–183

    Article  PubMed  CAS  Google Scholar 

  20. Slack JM, Kuzio J, Faulkner P (1995) Characterization of v-cath, a cathepsin L-like proteinase expressed by the baculovirus Autographa calfornica multiple nuclear polyhedrosis virus. J Gen Virol 76:1091–1098

    Article  PubMed  CAS  Google Scholar 

  21. Yang M, Li M, Wang Y, Qu L, Huai K, Nie X, Qiao L, Ding J, Zhang Y (2011) Virulence and characteristics of a new nucleopolyhedrovirus strain of Dendrolimus kikuchii (Lepidoptera: Lasiocampidae). Afr J Microbiol Res 5:2261–2265

    Google Scholar 

  22. Yang D, Wang Y, Li Y (1986) Studies on the nuclear polyhedrosis virus disease of simao pine caterpil-lcar infected by Dendrolimus kikuchii Matsumura (Lepidoptera: Lasiocampidae). J Yunnan Univ 1:105–110

    Google Scholar 

  23. Rajamohan F, Cotrill JA, Gould F, Dean DH (1996) Role of domain II, loop 2 residues of Bacillus thuringiensis CryIAb delta-endotoxin in reversible and irreversible binding to Manduca sexta and Heliothis virescens. J Biol Chem 271:2390–2396

    Article  PubMed  CAS  Google Scholar 

  24. Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  25. Uchiyama T, Katouno F, Nikaidou N, Nonaka T, Sugiyama J, Watanabe T (2001) Roles of the exposed aromatic residues in crystalline chitin hydrolysis by chitinase A from Serratia marcescens 2170. J Biol Chem 276:41343–41349

    Article  PubMed  CAS  Google Scholar 

  26. Young VL, Simpson RM, Ward VK (2005) Characterization of an exochitinse from Epiphyas postvittana nucleopolyhedrovirus (family Baculoviridae). J Gen Virol 86:3253–3261

    Article  PubMed  CAS  Google Scholar 

  27. Gomi S, Majima K, Maeda S (1999) Sequence analysis of the genome of Bombyx mori nucleopolyhedrovirus. J Gen Virol 80:1323–1337

    PubMed  CAS  Google Scholar 

  28. Perrakis A, Tews I, Dauter Z, Oppenheim AB, Chet I, Wilson KS, Vorgias CE (1994) Crystal structure of a bacterial chitinase at 2.3 Å resolution. Structure 2:1169–1180

    Article  PubMed  CAS  Google Scholar 

  29. Bork P, Doolittle RF (1992) Proposed acquisition of an animal protein domain by bacteria. Proc Natl Acad Sci USA 89:8990–8994

    Article  PubMed  CAS  Google Scholar 

  30. Perrakis A, Ouzounis C, Wilson KS (1997) Evolution of immunoglobulin-like modules in chitinases: their structural flexibility and functional implications. Fold Des 2:291–294

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program of National Nature Science Foundation of China (grant no. 31200491) and State 863 Project funded by Ministry of Science and Technology (grant no. 2012AA101503), P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2013_1775_MOESM1_ESM.tif

Fig. S1 Phylogenetic tree of chitinases from baculovirus. The tree was constructed by the neighbor-joining method, and bootstrap values are indicated at the branches. The amino acid sequences of chitinases were from the following viruses: Dendrolimus kikuchii NPV (JN680874), Hyphantria cunea NPV (YP473218), Orgyia pseudotsugata MNPV (NP046280), Bombyx mori NPV (NP047523), Autographa californica MNPV (NP054156), Spodoptera exigua MNPV (NP037779), Helicoverpa armigera SNPV (AAK28347) and Spodoptera litura NPV (NP258310) (TIFF 292 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Qu, L., Zhang, Z. et al. Characterization of a novel chitinase, DkChi, from Dendrolimus kikuchii nucleopolyhedrovirus. Arch Virol 158, 2523–2530 (2013). https://doi.org/10.1007/s00705-013-1775-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1775-7

Keywords

Navigation