Skip to main content
Log in

Spatiotemporal changes of normalized difference vegetation index (NDVI) and response to climate extremes and ecological restoration in the Loess Plateau, China

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Extreme drought, precipitation, and other extreme climatic events often have impacts on vegetation. Based on meteorological data from 52 stations in the Loess Plateau (LP) and a satellite-derived normalized difference vegetation index (NDVI) from the third-generation Global Inventory Modeling and Mapping Studies (GIMMS3g) dataset, this study investigated the relationship between vegetation change and climatic extremes from 1982 to 2013. Our results showed that the vegetation coverage increased significantly, with a linear rate of 0.025/10a (P < 0.001) from 1982 to 2013. As for the spatial distribution, NDVI revealed an increasing trend from the northwest to the southeast, with about 61.79% of the LP exhibiting a significant increasing trend (P < 0.05). Some temperature extreme indices, including TMAXmean, TMINmean, TN90p, TNx, TX90p, and TXx, increased significantly at rates of 0.77 mm/10a, 0.52 °C/10a, 0.62 °C/10a, 0.80 °C/10a, 5.16 days/10a, and 0.65 °C/10a, respectively. On the other hand, other extreme temperature indices including TX10p and TN10p decreased significantly at rates of −2.77 days/10a and 4.57 days/10a (P < 0.01), respectively. Correlation analysis showed that only TMINmean had a significant relationship with NDVI at the yearly time scale (P < 0.05). At the monthly time scale, vegetation coverage and different vegetation types responded significantly positively to precipitation and temperature extremes (TMAXmean, TMINmean, TNx, TNn, TXn, and TXx) (P < 0.01). All of the precipitation extremes and temperature extremes exhibited significant positive relationships with NDVI during the spring and autumn (P < 0.01). However, the relationship between NDVI and RX1day, TMAXmean, TXn, and TXx was insignificant in summer. Vegetation exhibited a significant negative relationship with precipitation extremes in winter (P < 0.05). In terms of human activity, our results indicate a strong correlation between the cumulative afforestation area and NDVI in Yan’an and Yulin during 1998–2013, r = 0.859 and 0.85, n = 16, P < 0.001.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Cao SX, Chen L, Shankman D, Wang CM, Wang XB, Zhang H (2011) Excessive reliance on afforestation in China’s arid and semi-arid regions: lessons in ecological restoration. Earth-Sci Rev 104:240–245. doi:10.1016/j.earscirev.2010.11.002

    Article  Google Scholar 

  • Chang RY, Fu BJ, Liu GH, Liu SG (2011) Soil carbon sequestration potential for “grain for green” project in loess Plateau, China. Environ Manag 48(6):1158–1172. doi:10.1007/s00267-011-9682-8

    Article  Google Scholar 

  • Chen YP, Wang KB, Lin YS, Shi WY, Song Y, He XH (2015) Balancing green and grain trade. Nat Geosci 8:739–741. doi:10.1038/ngeo2544

    Article  Google Scholar 

  • Du JQ, Shu JM, Yin JQ, Yuan XJ, Jiaerheng A, Xiong SS, He P, Liu WL (2015) Analysis on spatiotemporal trends and drivers in vegetation growth during recent decades in Xinjiang, China. Int J Appl Earth Obs 38:216–228. doi:10.1016/j.jag.2015.01.006

  • Du JQ, Zhao CX, Shu JM, Jiaerheng A, Yuan XJ, Yin JQ, Fang SF, He P (2016) Spatiotemporal changes of vegetation on the Tibetan Plateau and relationship to climatic variables during multiyear periods from 1982–2012. Environ Earth Sci 75(1):1–18. doi:10.1007/s12665-015-4818-4

    Article  Google Scholar 

  • Feng XM, Fu BJ, Piao SL, Wang S, Ciais P, Zeng ZZ, Lü YH, Zeng Y, Li Y, Jiang XH, Wu BF (2016) Revegetation in China’s loess Plateau is approaching sustainable water resource limits. Nat Clim Chang 6:1019–1022. doi:10.1038/NCLIMATE3092

    Article  Google Scholar 

  • Fensholt R, Proud SR (2012) Evaluation of Earth observation based global long term vegetation trends - comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ 119:131–147. doi:10.1016/j.rse.2011.12.015

    Article  Google Scholar 

  • Guay KC, Beck P, Berner LT, Goetz SJ, Baccini A, Buermann W (2014) Vegetation productivity patterns at high northern latitudes: a multi-sensor satellite data assessment. Glob Chang Biol 20:3147–3158. doi:10.1111/gcb.12647

    Article  Google Scholar 

  • Hilker T, Lyapustin AI, Tucker CJ, Hall FG, Myneni RB, Wang YJ, Bi J, de Moura YM, Sellers PJ (2014) Vegetation dynamics and rainfall sensitivity of the Amazon. P Natl Acad Sci USA 111:16041–16046. doi:10.1073/pnas.1404870111

    Article  Google Scholar 

  • Hou X (2001) Vegetation atlas of China. Chinese academy of Science, the editorial Board of Vegetation map of China. Beijing, China, scientific press.

  • Hu ZY, Zhang C, Hu Q, Tian HQ (2014) Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets. J Clim 27:1143–1167. doi:10.1175/JCLI-D-13-00064.1

    Article  Google Scholar 

  • John R, Chen JQ, Ou-Yang ZT, Xiao JF, Becker R, Samanta A, Ganguly S, Yuan WP, Batkhishig O (2013) Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010. Environ Res Lett 8(UNSP 0350333). doi: 10.1088/1748-9326/8/3/035033

  • Li Z, Zheng FL, Liu WZ, Flanagan DC (2010) Spatial distribution and temporal trends of extreme temperature and precipitation events on the loess Plateau of China during 1961-2007. Quatern Int 226:92–100. doi:10.1016/j.quaint2010.03.003

    Article  Google Scholar 

  • Li Z, Zheng FL, Liu WZ (2012) Spatiotemporal characteristics of reference evapotranspiration during 1961-2009 and its projected changes during 2011-2099 on the loess Plateau of China. Agric For Meteorol 154:147–155. doi:10.1016/j.agrformet.2011.10.019

    Article  Google Scholar 

  • Liao H, Chang WY (2014) Integrated assessment of air quality and climate change for policy-making: highlights of IPCC AR5 and research challenges. Natl Sci Rev 1:176–179. doi:10.1093/nsr/nwu005

    Article  Google Scholar 

  • Liu Y, Lei H (2015) Responses of natural vegetation dynamics to climate drivers in China from 1982 to 2011. Remote Sens-Basel 7(8):10243–10268. doi:10.3390/rs70810243

    Article  Google Scholar 

  • Liu G, Liu HY, Yin Y (2013) Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes. Environ Res Lett 8(0250092). doi:10.1088/1748-9326/8/2/025009

  • Liu D, Chen Y, Cai WW, Dong WJ, Xiao JF, Chen JQ, Zhang HC, Xia JZ, Yuan WP (2014) The contribution of China’s grain to green program to carbon sequestration. Landsc Ecol 29(10):1675–1688. doi:10.1007/s10980-014-0081-4

    Article  Google Scholar 

  • Liu XF, Zhu XF, Pan YZ, Zhao AZ, Li YZ (2015a) Spatiotemporal changes of cold surges in Inner Mongolia between 1960 and 2012. J Geogr Sci 25:259–273. doi:10.1007/s11442-015-1166-y

    Article  Google Scholar 

  • Liu YX, Liu XF, Hu YN, Li SS, Peng J, Wang YL (2015b) Analyzing nonlinear variations in terrestrial vegetation in China during 1982-2012. Environ Monit Assess 187(72211). doi:10.1007/s10661-015-4922-7

  • Liu XF, Zhu XF, Pan YZ, Li SS, Ma YQ, Nie J (2016) Vegetation dynamics in Qinling-Daba Mountains in relation to climate factors between 2000 and 2014. J Geogr Sci 26(1):45–58. doi:10.1007/s11442-016-1253-8

    Article  Google Scholar 

  • Lü YH, Fu BJ, Feng XM, Zeng Y, Liu Y, Chang RY, Sun G, Wu BF (2012) A policy-driven large scale ecological restoration: quantifying ecosystem services changes in the loess Plateau of China. PLoS One 7(e317822). doi:10.1371/journal.pone.0031782

  • Lü YH, Zhang LW, Feng XM, Zeng Y, Fu BJ, Yao XL, Li JR, Wu BF (2015) Recent ecological transitions in China: greening, browning, and influential factors. Sci Rep-UK 5(8732). doi:10.1038/srep08732

  • Miao CY, Yang L, Chen XH, Gao Y (2012) The vegetation cover dynamics (1982–2006) in different erosion regions of the Yellow River basin, China. Land Degrad Dev 23:62–71. doi:10.1002/ldr.1050

    Article  Google Scholar 

  • Ouyang ZY, Zheng H, Xiao Y, Polasky S, Liu JG, Xu WH, Wang Q, Zhang L, Yang X, Rao EM, Jiang L, Lu F, Wang XK, Yang GB, Gong SH, Wu BF, Zeng Y, Yang WC, Daily G (2016) Improvements in ecosystem services from investments in natural capital. Science 352(6292):1455–1459. doi:10.1126/science.aaf2295

    Article  Google Scholar 

  • Peng J, Liu ZH, Liu YH, Wu JS, Han YA (2012) Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst exponent. Ecol Indic 14:28–39. doi:10.1016/j.ecolind.2011.08.011

    Article  Google Scholar 

  • Piao SL, Wang XH, Ciais P, ZhuB WT, Liu J (2011) Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob Chang Biol 17:3228–3239. doi:10.1111/j.1365-2486.2011.02419.x

    Article  Google Scholar 

  • Pinzon JE, Tucker CJ (2014) A non-stationary 1981-2012 AVHRR NDVI3g time series. Remote Sens-Basel 6:6929–6960. doi:10.3390/rs6086929

    Article  Google Scholar 

  • Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, van der Velde M, Vicca S, Walz A, Wattenbach M (2013) Climate extremes and the carbon cycle. Nature 500:287–295. doi:10.1038/nature12350

    Article  Google Scholar 

  • Seneviratne SI, Nicholls N, Easterling D, Goodess CM (2012) Changes in climate extremes and their impacts on the natural physical environment. Managing the risks of extreme events and disasters to advance climate change adaptation: 109–230

  • Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections J Geophys Res Atmos 118:2473–2493. doi:10.1002/jgrd.50188

    Article  Google Scholar 

  • Stocker DQ. 2013. Climate change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Summary for Policymakers. IPCC

  • Stow D, Daeschner S, Hope A, Douglas D, Petersen A, Myneni R, Zhou L, Oechel W (2003) Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s. Int J Remote Sens 24:1111–1117. doi:10.1080/0143116021000020144

    Article  Google Scholar 

  • Sun WC, Song H, Yao XL, Ishidaira H, Xu ZX (2015a) Changes in remotely sensed vegetation growth trend in the Heihe Basin of arid northwestern China. PLoS One 10(e01353768). doi:10.1371/journal.pone.0135376

  • Sun WY, Song XY, Mu XM, Gao P, Wang F, Zhao GJ (2015b) Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the loess Plateau. Agric For Meteorol 209:87–99. doi:10.1016/j.agrformet.2015.05.002

    Article  Google Scholar 

  • Sun WY, Mu XM, Song XY, WuD CAF, Qiu B (2016) Changes in extreme temperature and precipitation events in the loess Plateau (China) during 1960-2013 under global warming. Atmos Res 168:33–48. doi:10.1016/j.atmosres.2015.09.001

    Article  Google Scholar 

  • Tan ZQ, Tao H, Jiang JH, Zhang Q (2015) Influences of climate extremes on NDVI (normalized difference vegetation index) in the Poyang Lake Basin, China. Wetlands 35:1033–1042. doi:10.1007/s13157-015-0692-9

    Article  Google Scholar 

  • Tarnavsky E, Garrigues S, Brown ME (2008) Multiscale geostatistical analysis of AVHRR, SPOT-VGT, and MODIS global NDVI products. Remote Sens Environ 112(2):535–549. doi:10.1016/j.rse.2007.05.008

    Article  Google Scholar 

  • Wallace JM, Held IM, Thompson D, Trenberth KE, Walsh JE (2014) Global warming and winter weather. Science 343:729–730. doi:10.1126/science.343.6172.729

    Article  Google Scholar 

  • Wang GY, Innes JL, Lei JF, Dai SY, Wu SW (2007) Ecology - China’s forestry reforms. Science 318:1556–1557. doi:10.1126/science.1147247

    Article  Google Scholar 

  • Xiao JF (2014) Satellite evidence for significant biophysical consequences of the "grain for green" program on the loess Plateau in China. J Geophys Res Biogeosci 119:2261–2275. doi:10.1002/2014JG002820

    Article  Google Scholar 

  • Xin ZB, Xu JX, Zheng W (2008) Spatiotemporal variations of vegetation cover on the Chinese loess Plateau (1981-2006): impacts of climate changes and human activities. Sci China Ser D 51:67–78. doi:10.1007/s11430-007-0137-2

    Article  Google Scholar 

  • You QL, Kang SC, Aguilar E, Pepin N, Flügel WA, Yan YP, Xu YW, Zhang YJ, Huang J (2011) Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim Dynam 36(11–12):2399–2417. doi:10.1007/s00382-009-0735-0

    Article  Google Scholar 

  • Zhang XB, Hegerl G, Zwiers FW, Kenyon J (2005) Avoiding inhomogeneity in percentile-based indices of temperature extremes. J Clim 18:1641–1651. doi:10.1175/JCLI3366.1

    Article  Google Scholar 

  • Zhang BQ, Wu PT, Zhao XN, Wang YB, Gao XD (2013a) Changes in vegetation condition in areas with different gradients (1980-2010) on the loess Plateau, China. Environ Earth Sci 68:2427–2438. doi:10.1007/s12665-012-1927-1

    Article  Google Scholar 

  • Zhang YL, Gao JG, Liu LS, Wang ZF, Ding MJ, Yang XC (2013b) NDVI-based vegetation changes and their responses to climate change from 1982 to 2011: a case study in the Koshi River Basin in the middle Himalayas. Glob Planet Chang 108:139–148. doi:10.1016/j.gloplacha.2013.06.012

    Article  Google Scholar 

  • Zhang Y, Peng CH, Li WZ, Tian LX, Zhu QA, Chen H, Fang XQ, Zhang GL, Liu GB, Mu XM, Li ZB, Li SQ, Yang YZ, Wang J, Xiao XM (2016a) Multiple afforestation programs accelerate the greenness in the‘three north’ region of China from 1982 to 2013. Ecol Indic 61:404–412. doi:10.1016/j.ecolind.2015.09.041

    Article  Google Scholar 

  • Zhang Y, Zhang CB, Wang ZQ, Chen YZ, Gang CC, An R, Li JL (2016b) Vegetation dynamics and its driving forces from climate change and human activities in the Three-River source region, China from 1982 to 2012. Sci Total Environ 563:210–220. doi:10.1016/j.scitotenv.2016.03.223

    Article  Google Scholar 

  • Zhao GJ, Mu XM, Tian P, Jiao JY, Wang F (2013) Have conservation measures improved Yellow River health? J Soil Water Conserv 68(6):159A–161A. doi:10.2489/jswc.68.6.159A

    Article  Google Scholar 

  • Zhao AZ, Liu XF, Zhu XF, Pan YZ, Zhao YL, Wang DL (2016) Trend variations and spatial difference of extreme air temperature events in the loess Plateau from 1965 to 2013. Geogr Res 35:639–652. doi:10.11821/dlyj201604004

    Google Scholar 

  • Zheng JY, Hao ZX, Fang XQ, Ge QS (2014) Changing characteristics of extreme climate events during past 2000 years in China. Prog Geo 33:3–12. doi:10.11820/dlkxjz.2014.01.001

    Google Scholar 

Download references

Acknowledgments

The work was partially supported by the Natural Science Foundation of Hebei Province (Grant # D2015402134), Education Department of Hebei Province (Grant YQ2013012, QN 2014184), and National High Technology Research and Development Program 863 of China (Grant # 2015AA123901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anzhou Zhao or Anbing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, A., Zhang, A., Liu, X. et al. Spatiotemporal changes of normalized difference vegetation index (NDVI) and response to climate extremes and ecological restoration in the Loess Plateau, China. Theor Appl Climatol 132, 555–567 (2018). https://doi.org/10.1007/s00704-017-2107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-017-2107-8

Navigation