Skip to main content

Advertisement

Log in

On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The Tibet Plateau (TP) is a key region that imposes profound impacts on the atmospheric water cycle and energy budget of Asia, even the global climate. In this work, we develop a climatology of origin (destination) of air mass and moisture transported to (from) the TP using a Lagrangian moisture diagnosis combined with the forward and backward atmospheric tracking schemes. The climatology is derived from 6-h particle positions based on 5-year (2005–2009) seasonal summer trajectory dataset from the Lagrangian particle dispersion model FLEXPART using NCEP/GFS data as input, where the regional model atmosphere was globally filled with particles. The results show that (1) the dominant origin of the moisture supplied to the TP is a narrow tropical–subtropical band in the extended Arabian Sea covering a long distance from the Indian subcontinent to the Southern Hemisphere. Two additional moisture sources are located in the northwestern part of TP and the Bay of Bengal and play a secondary role. This result indicates that the moisture transporting to the TP more depends on the Indian summer monsoon controlled by large-scale circulation. (2) The moisture departing from the TP can be transported rapidly to East Asia, including East China, Korea, Japan, and even East Pacific. The qualitative similarity between the regions of diagnosed moisture loss and the pattern of the observed precipitation highlights the robustness of the role of the TP on precipitation over East Asia. (3) In contrast to the moisture origin confined in the low level, the origin and fate of whole column air mass over the TP is largely controlled by a strong high-level Asian anticyclone. The results show that the TP is a crossroad of air mass where air enters mainly from the northwest and northeast and continues in two separate streams: one goes southwestwards over the Indian Ocean and the other southeastwards through western North Pacific. Both of them partly enter the trade wind zone, which manifests the influence of the air mass transport over the TP on the budget of global atmosphere compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeor 4:1147–1167

    Article  Google Scholar 

  • Bao Q, Yang J, Liu YM, Wu GX, Wang B (2009) Roles of anomalous Tibetan Plateau warming on the severe 2008 winter storm in Central-Southern China. Mon Weather Rev 138(6):2375–2384. doi:10.1175/2009mwr2950.1

    Article  Google Scholar 

  • Bornstein R, Lin Q (2000) Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmos Environ 34(3):507–516. doi:10.1016/s1352-2310(99)00374-x

    Article  Google Scholar 

  • Chen B, Xu XD, Bian JC, Shi XH (2010) Irreversible stratosphere–troposphere mass exchange characteristics over the Asian summer monsoon region. Chin J Geophys Chin Ed 53(5):1050–1059. doi:10.3969/j.issn.0001-5733.2010.05.005

    Google Scholar 

  • Chow K, Tong H-W, Chan J (2008) Water vapor sources associated with the early summer precipitation over China. Clim Dynam 30(5):497–517. doi:10.1007/s00382-007-0301-6

    Article  Google Scholar 

  • Dessler AE, Sherwood SC (2004) Effect of convection on the summertime extratropical lower stratosphere. J Geophys Res 109(D23):D23301. doi:10.1029/2004jd005209

    Article  Google Scholar 

  • Devasthale A, Fueglistaler S (2010) A climatological perspective of deep convection penetrating the TTL during the Indian summer monsoon from the AVHRR and MODIS instruments. Atmos Chem Phys 10(10):4573–4582

    Article  Google Scholar 

  • Ding Y, Wang Z, Sun Y (2008) Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int J Climatol 28(9):1139–1161. doi:10.1002/joc.1615

    Article  Google Scholar 

  • Dong H, Zhao S, Zeng Q (2007) A study of influencing systems and moisture budget in a heavy rainfall in low latitude plateau in China during early summer. Adv Atmos Sci 24(3):485–502. doi:10.1007/s00376-007-0485-z

    Article  Google Scholar 

  • Drumond A, Nieto R, Gimeno L (2011a) On the contribution of the tropical Western Hemisphere warm pool source of moisture to the Northern Hemisphere precipitation through a Lagrangian approach. J Geophys Res 116:D00Q04. doi:10.1029/2010jd015397

    Article  Google Scholar 

  • Drumond A, Nieto R, Gimeno L, Ambrizzi T (2008) A Lagrangian identification of major sources of moisture over Central Brazil and La Plata Basin. J Geophys Res 113:D14128. doi:10.1029/2007JD009547

    Article  Google Scholar 

  • Drumond A, Nieto R, Trigo R, Ambrizzi T, Souza E, Gimeno L (2010) A Lagrangian identification of the main sources of moisture affecting northeastern Brazil during its pre-rainy and rainy seasons. PLoS One 5(6):e11205. doi:10.1371/journal.pone.0011205

    Article  Google Scholar 

  • Drumond A, Nieto R, Gimeno L (2011b) Sources of moisture for China and their variations during drier and wetter conditions in 2000–2008: a Lagrangian approach. Clim Res 50(2–3):215–225

    Article  Google Scholar 

  • Duan A, Wu G (2005) Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim Dynam 24(7):793–807. doi:10.1007/s00382-004-0488-8

    Article  Google Scholar 

  • Fan H, Sailor DJ (2005) Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: a comparison of implementations in two PBL schemes. Atmos Environ 39(1):73–84. doi:10.1016/j.atmosenv.2004.09.031

    Article  Google Scholar 

  • Flohn H (1957) Large-scale aspects of the “summer monsoon” in south and east Asia. J Meteorol Soc Jpn 75:180–186

    Google Scholar 

  • Fu R, Hu YL, Wright JS, Jiang JH, Dickinson RE, Chen MX, Filipiak M, Read WG, Waters JW, Wu DL (2006) Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc Natl Acad Sci U S A 103(15):5664–5669. doi:10.1073/pnas.0601584103

    Article  Google Scholar 

  • Gimeno L, Drumond A, Nieto R, Trigo RM, Stohl A (2010a) On the origin of continental precipitation. Geophys Res Lett 37:L13804. doi:doi:10.1029/2010GL043712

    Article  Google Scholar 

  • Gimeno L, Nieto R, Trigo RM, Vicente-Serrano SM, Lopez-Moreno JI (2010b) Where does the Iberian Peninsula moisture come from? An answer based on a Lagrangian approach. J Hydrometeor 11(2):421–436

    Article  Google Scholar 

  • He J, Sun C, Liu Y, Matsumoto J, Li W (2007) Seasonal transition features of large-scale moisture transport in the Asian–Australian monsoon region. Adv Atmos Sci 24(1):1–14. doi:10.1007/s00376-007-0001-5

    Article  Google Scholar 

  • Hondula DM, Sitka L, Davis RE, Knight DB, Gawtry SD, Deaton ML, Lee TR, Normile CP, Stenger PJ (2010) A back-trajectory and air mass climatology for the Northern Shenandoah Valley, USA. Int J Climatol 30(4):569–581. doi:10.1002/joc.1896

    Google Scholar 

  • Huang J, Minnis P, Yi Y, Tang Q, Wang X, Hu Y, Liu Z, Ayers K, Trepte C, Winker D (2007) Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys Res Lett 34(18):L18805. doi:10.1029/2007gl029938

    Article  Google Scholar 

  • Jin M (2006) MODIS observed seasonal and interannual variations of atmospheric conditions associated with hydrological cycle over Tibetan Plateau. Geophys Res Lett 33(19):L19707. doi:10.1029/2006gl026713

    Article  Google Scholar 

  • Lau K, Kim M, Kim K (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dynam 26(7):855–864. doi:10.1007/s00382-006-0114-z

    Article  Google Scholar 

  • Lau KM, Kim KM (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33(21):L21810. doi:10.1029/2006gl027546

    Article  Google Scholar 

  • Li J, Cook ER, Chen F, Davi N, D’Arrigo R, Gou X, Wright WE, Fang K, Jin L, Shi J, Yang T (2009) Summer monsoon moisture variability over China and Mongolia during the past four centuries. Geophys Res Lett 36(22):L22705. doi:10.1029/2009gl041162

    Article  Google Scholar 

  • Liu X, Yin Z-Y (2001) Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic Oscillation. J Climate 14(13):2896–2909. doi:10.1175/1520-0442

    Article  Google Scholar 

  • Liu YM, Bao Q, Duan A, Qian ZA, Wu GQ (2007) Recent progress in the impact of the Tibetan Plateau on climate in China. Adv Atmos Sci 24(6):1060–1076. doi:10.1007/s00376-007-1060-3

    Article  Google Scholar 

  • Nieto R, Gimeno L, Trigo RM (2006) A Lagrangian identification of major sources of Sahel moisture. Geophys Res Lett 33:L18707. doi:10.1029/2006GL027232

    Article  Google Scholar 

  • Nieto R, Gimeno L, Drumond A, Hernandez E (2010) A Lagrangian identification of the main moisture sources and sinks affecting the Mediterranean area. WSEAS Trans Environ Dev 6(5):365–374

    Google Scholar 

  • Numaguti A (1999) Origin and recycling processes of precipitating water over the Eurasian continent: experiments using an atmospheric general circulation model. J Geophys Res 104(D2):1957–1972. doi:10.1029/1998jd200026

    Article  Google Scholar 

  • Park M, Randel WJ, Emmons LK, Livesey NJ (2009) Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART). J Geophys Res 114(D8):D08303. doi:10.1029/2008jd010621

    Article  Google Scholar 

  • Sato T, Kimura F (2007) How does the Tibetan Plateau affect the transition of Indian monsoon rainfall? Mon Weather Rev 135(5):2006–2015. doi:10.1175/mwr3386.1

    Article  Google Scholar 

  • Schicker I, Radanovics S, Seibert P (2010) Origin and transport of Mediterranean moisture and air. Atmos Chem Phys 10(11):5089–5105. doi:10.5194/acp-10-5089-2010

    Article  Google Scholar 

  • Simmonds I, Bi D, Hope P (1999) Atmospheric water vapor flux and its association with rainfall over China in summer. J Climate 12:1353–1367

    Article  Google Scholar 

  • Sodemann H, Stohl A (2009) Asymmetries in the moisture origin of Antarctic precipitation. Geophys Res Lett 36:L22803. doi:10.1029/2009gl040242

    Article  Google Scholar 

  • Sodemann H, Zubler E (2010) Seasonal and inter-annual variability of the moisture sources for Alpine precipitation during 1995–2002. Int J Climatol 30(7):947–961. doi:10.1002/joc.1932

    Google Scholar 

  • Stohl A (2006) Characteristics of atmospheric transport into the Arctic troposphere. J Geophys Res 111:D11306. doi:10.1029/2005jd006888

    Article  Google Scholar 

  • Stohl A, Forster C, Frank A, Seibert P, Wotawa G (2005) Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos Chem Phys 5:2461–2474

    Article  Google Scholar 

  • Stohl A, Forster C, Sodemann H (2008) Remote sources of water vapor forming precipitation on the Norwegian west coast at 60 degrees N—a tale of hurricanes and an atmospheric river. J Geophys Res 113(D5):D05102. doi:10.1029/2007JD009006

    Article  Google Scholar 

  • Stohl A, James P (2004) A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J Hydrometeor 5(4):656–678

    Article  Google Scholar 

  • Stohl A, James P (2005) A Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between earth’s ocean basins and river catchments. J Hydrometeor 6(6):961–984

    Article  Google Scholar 

  • Tian W, Chipperfield M, Huang Q (2008) Effects of the Tibetan Plateau on total column ozone distribution. Tellus B Chem Phys Meteorol 60(4):622–635. doi:10.1111/j.1600-0889.2008.00338.x

    Article  Google Scholar 

  • Wang B, Bao Q, Hoskins B, Wu GX, Liu YM (2008) Tibetan Plateau warming and precipitation changes in East Asia. Geophys Res Lett 35(14):L14702. doi:10.1029/2008gl034330

    Article  Google Scholar 

  • Wu G, Zhang Y (1998) Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon Weather Rev 126(4):913–927. doi:10.1175/1520-0493

    Article  Google Scholar 

  • Xu X, Lu C, Shi X, Ding Y (2010) Large-scale topography of China: a factor for the seasonal progression of the Meiyu rainband? J Geophys Res 115(D2):D02110. doi:10.1029/2009jd012444

    Article  Google Scholar 

  • Xu X, Lu C, Shi X, Gao S (2008a) World water tower: an atmospheric perspective. Geophys Res Lett 35(20):L20815. doi:10.1029/2008gl035867

    Article  Google Scholar 

  • Xu XD, Miao Q, Wang J, Zhang X (2003) The water vapor transport model at the regional boundary during the Meiyu period. Adv Atmos Sci 20(3):333–342. doi:10.1007/bf02690791

    Article  Google Scholar 

  • Xu XD, Shi XY, Wang YQ, Peng SQ, Shi XH (2008b) Data analysis and numerical simulation of moisture source and transport associated with summer precipitation in the Yangtze River Valley over China. Meteorol Atmos Phys 100(1):217–231. doi:10.1007/s00703-008-0305-8

    Article  Google Scholar 

  • Xu XD, Tao SY, Wang JZ (2002) The relationship between moisture transport features of Tibetan Plateau-monsoon “large triangle” affecting region and drought–flood abnormality of China (in Chinese). Acta Meteorol Sin 60:257–266

    Google Scholar 

  • Yang K, Guo X, He J, Qin J, Koike T (2010) On the climatology and trend of the atmospheric heat source over the Tibetan Plateau: an experiments-supported revisit. J Climate 24(5):1525–1541

    Article  Google Scholar 

  • Ye DZ, Gao Y (1979) Meteorology of the Qinghai–Xizang Plateau. Chinese Science Press, Beijing (in Chinese)

    Google Scholar 

  • Ye DZ, Gu ZC (1955) On the influence of the Qinghai–Xizang Plateau on East Asian circulation and weather in China. Sci Sin 4:29–33 (in Chinese)

    Google Scholar 

  • Zhan R, Li J (2008) Influence of atmospheric heat sources over the Tibetan Plateau and the tropical western North Pacific on the inter-decadal variations of the stratosphere-troposphere exchange of water vapor. Sci China Earth Sci 51(8):1179–1193. doi:10.1007/s11430-008-0082-8

    Article  Google Scholar 

  • Zhang Q, Xu C-Y, Chen X, Zhang Z (2011a) Statistical behaviours of precipitation regimes in China and their links with atmospheric circulation 1960–2005. Int J Climatol 31(11):1665–1678. doi:10.1002/joc.2193

    Google Scholar 

  • Zhang Z, Zhang Q, Chen X, Zhang J, Zhou J (2011b) Statistical properties of moisture transport in East Asia and their impacts on wetness/dryness variations in North China. Theor Appl Climatol 104(3):337–347. doi:10.1007/s00704-010-0346-z

    Article  Google Scholar 

  • Zhou T-J, Yu R-C (2005) Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J Geophys Res 110(D8):D08104. doi:10.1029/2004jd005413

    Article  Google Scholar 

Download references

Acknowledgments

This research was jointly funded by the National Natural Science Foundation of China (grant nos. 41105027, 41130960), the China Postdoctoral Science Foundation (grant no. 20110490488), and the social commonweal profession research program of Ministry of Science and Technology of the People’s Republic of China (GYHY201006009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Xu, XD., Yang, S. et al. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theor Appl Climatol 110, 423–435 (2012). https://doi.org/10.1007/s00704-012-0641-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0641-y

Keywords

Navigation