Skip to main content
Log in

Using zinc ion-enhanced fluorescence of sulfur quantum dots to improve the detection of the zinc(II)-binding antifungal drug clioquinol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A turn on–off fluorometric assay for clioquinol (CQ) is described here. It is based on modulation of the fluorescence of sulfur quantum dots (SQDs; best measured at excitation/emission wavelengths of 360/426 nm) by using the Zn2+-CQ affinity pair. Although the fluorescence enhancement effect of Zn2+ on SQDs was not obvious, a good quenching modulation effect was observed in the presence of CQ. This resulted in a linear analytical range that is increased by two orders of magnitude (from 0.024 μM to 0.24 μM, and 0.62 μM to 30 μM), with a detection limit (3 s) of 0.015 μM. The selectivity of the method is also improved.

Schematic illustration of the turn on-off fluorometric assay for for clioquinol (CQ) based on Zn2+-modulated sulfur quantum dots (SQDs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hill V, Wong E, Corbett M, Menday A (1998) Comparative efficacy of betamethasone/clioquinol (Betnovate-C) cream and betamethasone/fusidic acid (Fucibet) cream in the treatment of infected hand eczema. J Dermatol Treat 9(1):15–19

    Article  CAS  Google Scholar 

  2. Park M-H, Lee S-J, H-r B, Kim Y, Oh YJ, Koh J-Y, Hwang JJ (2011) Clioquinol induces autophagy in cultured astrocytes and neurons by acting as a zinc ionophore. Neurobiol Dis 42(3):242–251

    Article  CAS  Google Scholar 

  3. Di Vaira M, Bazzicalupi C, Orioli P, Messori L, Bruni B, Zatta P (2004) Clioquinol, a drug for Alzheimer's disease specifically interfering with brain metal metabolism: structural characterization of its zinc (II) and copper (II) complexes. Inorg Chem 43(13):3795–3797

    Article  Google Scholar 

  4. Priel T, Aricha-Tamir B, Sekler I (2007) Clioquinol attenuates zinc-dependent β-cell death and the onset of insulitis and hyperglycemia associated with experimental type I diabetes in mice. Eur J Pharmacol 565(1–3):232–239

    Article  CAS  Google Scholar 

  5. Costello LC, Franklin RB (2016) A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer. Arch Biochem Biophys 611:100–112

    Article  CAS  Google Scholar 

  6. Mitrović A, Kljun J, Sosič I, Gobec S, Turel I, Kos J (2016) Clioquinol–ruthenium complex impairs tumour cell invasion by inhibiting cathepsin B activity. Dalton T 45(42):16913–16921

    Article  Google Scholar 

  7. León IE, Díez P, Baran EJ, Etcheverry SB, Fuentes M (2017) Decoding the anticancer activity of VO-clioquinol compound: the mechanism of action and cell death pathways in human osteosarcoma cells. Metallomics 9(7):891–901

    Article  Google Scholar 

  8. Mao X, Li X, Sprangers R, Wang X, Venugopal A, Wood T, Zhang Y, Kuntz D, Coe E, Trudel S (2009) Clioquinol inhibits the proteasome and displays preclinical activity in leukemia and myeloma. Leukemia 23(3):585

    Article  CAS  Google Scholar 

  9. Tehrani R, Ostrowski RA, Hariman R, Jay WM (2008) Ocular toxicity of hydroxychloroquine. Semin Ophthalmol 23(3):201–209

    Article  Google Scholar 

  10. Tateishi J (2000) Subacute myelo-optico-neuropathy: Clioquinol intoxication in humans and animals. Neuropathology 20:20–24

    Article  Google Scholar 

  11. Gimenez-Izquierdo J, Guiteras J, Izquierdo A, Prat M (1991) Spectrofluorimetric determination of clioquinol in pharmaceutical preparations. Fresenius J Anal Chem 341(10):638–640

    Article  CAS  Google Scholar 

  12. Bondiolotti G, Pollera C, Pirola R, Bareggi S (2006) Determination of 5-chloro-7-iodo-8-quinolinol (clioquinol) in plasma and tissues of hamsters by high-performance liquid chromatography and electrochemical detection. J Chromatogr B 837(1–2):87–91

    Article  CAS  Google Scholar 

  13. Zhang WW, He XL, Deng N, Wang Y, He JB (2014) Monitoring of intermediates of clioquinol electro-oxidation by thin-layer spectral and electrophoretic electrochemistry. Electrochim Acta 127:403–409

    Article  CAS  Google Scholar 

  14. Belal F, El-Din MKS, El Enany N, Saad S (2013) A validated liquid chromatographic method for the simultaneous determination of betamethasone valerate and clioquinol in creams using time programmed UV detection. Anal Methods 5(23):6767–6773

    Article  CAS  Google Scholar 

  15. Abdel-Aleem EA, Hegazy MA, Sayed NW, Abdelkawy M, Abdelfatah RM (2015) Novel spectrophotometric determination of flumethasone pivalate and clioquinol in their binary mixture and pharmaceutical formulation. Spectrochim Acta A 136:707–713

    Article  CAS  Google Scholar 

  16. Wang J, Chang Y, Zhang P, Lie SQ, Gao PF, Huang CZ (2015) Cu2+-mediated fluorescence switching of gold nanoclusters for the selective detection of clioquinol. Analyst 140(24):8194–8200

    Article  CAS  Google Scholar 

  17. Kim H, Beack S, Han S, Shin M, Lee T, Park Y, Kim KS, Yetisen AK, Yun SH, Kwon W (2018) Multifunctional photonic nanomaterials for diagnostic, therapeutic, and theranostic applications. Adv Mater 30(10):1701460

    Article  Google Scholar 

  18. Karthik R, Vinoth Kumar J, Chen SM, Seerangan K, Karuppiah C, Chen TW, Muthuraj V (2017) Investigation on the electrocatalytic determination and photocatalytic degradation of neurotoxicity drug clioquinol by Sn (MoO4) 2 nanoplates. ACS Appl Mater Inter 9(31):26582–26592

    Article  CAS  Google Scholar 

  19. Hu H, He H, Zhang J, Hou X, Wu P (2018) Optical sensing at the nanobiointerface of metal ion-optically-active nanocrystals. Nanoscale 10(11):5035–5046

    Article  CAS  Google Scholar 

  20. He H, Li C, Tian Y, Wu P, Hou X (2016) Phosphorescent differential sensing of physiological phosphates with lanthanide ions-modified Mn-doped ZnCdS quantum dots. Anal Chem 88(11):5892–5897

    Article  CAS  Google Scholar 

  21. Wu P, Yan X-P (2010) Ni2+−modulated homocysteine-capped CdTe quantum dots as a turn-on photoluminescent sensor for detecting histidine in biological fluids. Biosens Bioelectron 26(2):485–490

    Article  CAS  Google Scholar 

  22. Gong Y, Fan Z (2015) Highly selective manganese-doped zinc sulfide quantum dots based label free phosphorescent sensor for phosphopeptides in presence of zirconium (IV). Biosens Bioelectron 66:533–538

    Article  CAS  Google Scholar 

  23. Wu Y, Liu X, Wu Q, Yi J, Zhang G (2017) Carbon nanodots-based fluorescent turn-on sensor array for biothiols. Anal Chem 89(13):7084–7089

    Article  CAS  Google Scholar 

  24. Pu Y, Cai F, Wang D, Wang JX, Chen JF (2018) Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Ind Eng Chem Res 57(6):1790–1802

    Article  CAS  Google Scholar 

  25. Shen L, Wang H, Liu S, Bai Z, Zhang S, Zhang X, Zhang C (2018) Assembling of sulfur quantum dots in fission of sublimed sulfur. J Am Chem Soc 140(25):7878–7884

    Article  CAS  Google Scholar 

  26. Li S, Chen D, Zheng F, Zhou H, Jiang S, Wu Y (2014) Water-soluble and lowly toxic Sulphur quantum dots. Adv Funct Mater 24(45):7133–7138

    Article  CAS  Google Scholar 

  27. Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U (2013) Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat Protoc 8(8):1535–1550

    Article  Google Scholar 

  28. Pompa P, Martiradonna L, Della Torre A, Della Sala F, Manna L, De Vittorio M, Calabi F, Cingolani R, Rinaldi R (2006) Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat Nanotechnol 1(2):126–130

    Article  CAS  Google Scholar 

  29. Ray K, Badugu R, Lakowicz JR (2006) Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study. J Am Chem Soc 128(28):8998–8999

    Article  CAS  Google Scholar 

  30. Geng S, Lin SM, Li NB, Luo HQ (2017) Polyethylene glycol capped ZnO quantum dots as a fluorescent probe for determining copper (II) ion. Sensors Actuators B Chem 253:137–143

    Article  CAS  Google Scholar 

  31. Lakowicz JR (2013) Principles of fluorescence spectroscopy. Springer Science & Business Media, Berlin

    Google Scholar 

  32. Ferrada E, Arancibia V, Loeb B, Norambuena E, Olea-Azar C, Huidobro-Toro JP (2007) Stoichiometry and conditional stability constants of cu (II) or Zn (II) clioquinol complexes; implications for Alzheimer's and Huntington's disease therapy. Neurotoxicology 28(3):445–449

    Article  CAS  Google Scholar 

  33. Rodríguez-Santiago L, Alí-Torres J, Vidossich P, Sodupe M (2015) Coordination properties of a metal chelator clioquinol to Zn2+ studied by static DFT and ab initio molecular dynamics. PCCP 17(20):13582–13589

    Article  Google Scholar 

  34. Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Advan 3(26):10471–10478

    Article  CAS  Google Scholar 

  35. Shankar S, Pangeni R, Park JW, Rhim J-W (2018) Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect. Mat Sci Eng C-Mater 92:508–517

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (31700876, 31700862), Natural Science Foundation of Shanxi Province (201601D021106), Basic Research Program of Shanxi Normal University (ZR1602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhefeng Fan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Fan, Z. Using zinc ion-enhanced fluorescence of sulfur quantum dots to improve the detection of the zinc(II)-binding antifungal drug clioquinol. Microchim Acta 187, 3 (2020). https://doi.org/10.1007/s00604-019-4020-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4020-6

Keywords

Navigation