Skip to main content
Log in

Core-shell upconversion nanoparticles of type NaGdF4:Yb,Er@NaGdF4:Nd,Yb and sensitized with a NIR dye are a viable probe for luminescence determination of the fraction of water in organic solvents

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Lanthanide-doped core-shell upconversion nanoparticles (UCNPs) of type NaGdF4:Yb,Er@NaGdF4:Yb,Nd were prepared by the co-precipitation method. The luminescence intensity was further enhanced by adding the sensitizer dye IR-808. If water is added to organic solvents [such as N,N-dimethylformamide (DMF), dimethyl sulfoxide, methanol, acetone, acetonitrile, and ethanol] containing the probe, its luminescence intensity peaking at 545 nm is reduced. The decrease is linearly related to the percentage of water in the respective organic solvent. Water fractions ranging from 0.05% to 10% (volume %) can be sensitively detected, and the detection limit is 0.018% of water in DMF. The detection scheme is mainly attributed to the fact that the transfer of energy from the near-infrared light (NIR) dye to the UCNPs is strongly reduced in the presence of traces of water.

The near infrared dye (IR-808) transfer efficiency to NaGdF4:Yb, Er@NaGdF4:Yb, Nd upconversion nanoparticles in water is far less than that in organic phase. Several methods for determination of trace water in organic solvents were developed by using this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang L, Li Y (2007) Luminescent coordination compound nanospheres for water determination. Small 3(7):1218–1221. https://doi.org/10.1002/smll.200600564

    Article  CAS  PubMed  Google Scholar 

  2. Gao F, Luo F, Chen X, Yao W, Yin J, Yao Z, Wang L (2009) Fluorometric determination of water in organic solvents using europium ion-based luminescent nanospheres. Microchim Acta 166(1–2):163–167. https://doi.org/10.1007/s00604-009-0180-0

    Article  CAS  Google Scholar 

  3. Kang E, Park HR, Yoon J, Yu H-Y, Chang S-K, Kim B, Choi K, Ahn S (2018) A simple method to determine the water content in organic solvents using the 1 H NMR chemical shifts differences between water and solvent. Microchem J 138:395–400. https://doi.org/10.1016/j.microc.2018.01.034

    Article  CAS  Google Scholar 

  4. Ohira S, Miki Y, Matsuzaki T, Nakamura N, Sato YK, Hirose Y, Toda K (2015) A fiber optic sensor with a metal organic framework as a sensing material for trace levels of water in industrial gases. Anal Chim Acta 886:188–193. https://doi.org/10.1016/j.aca.2015.05.045

    Article  CAS  PubMed  Google Scholar 

  5. Huang D, Bing Y, Yi H, Hong W, Lai C, Guo Q, Niu C (2015) An optical-fiber sensor based on time-gated fluorescence for detecting water content in organic solvents. Anal Methods 7(11):4621–4628. https://doi.org/10.1039/c5ay00110b

    Article  CAS  Google Scholar 

  6. Wang X-Y, Niu C-G, Hu L-Y, Huang D-W, Wu S-Q, Zhang L, Wen X-J, Zeng G-M (2017) A fluorescent ratiometric sensor based on covalent immobilization of chalcone derivative and porphyrin zinc for detecting water content in organic solvents. Sensors Actuators B Chem 243:1046–1056. https://doi.org/10.1016/j.snb.2016.12.084

    Article  CAS  Google Scholar 

  7. Ye C, Qin Y, Huang P, Chen A, Wu FY (2018) Facile synthesis of carbon nanodots with surface state-modulated fluorescence for highly sensitive and real-time detection of water in organic solvents. Anal Chim Acta 1034:144–152. https://doi.org/10.1016/j.aca.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  8. Wu JX, Yan B (2017) A dual-emission probe to detect moisture and water in organic solvents based on green-Tb(3+) post-coordinated metal-organic frameworks with red carbon dots. Dalton Trans 46(21):7098–7105. https://doi.org/10.1039/c7dt01352c

    Article  CAS  PubMed  Google Scholar 

  9. Zhou Y, Zhang D, Xing W, Cuan J, Hu Y, Cao Y, Gan N (2019) Ratiometric and turn-on luminescence detection of water in organic solvents using a responsive europium-organic framework. Anal Chem 91:4845–4851. https://doi.org/10.1021/acs.analchem.9b00493

    Article  CAS  PubMed  Google Scholar 

  10. Chen L, Ye JW, Wang HP, Pan M, Yin SY, Wei ZW, Zhang LY, Wu K, Fan YN, Su CY (2017) Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence. Nat Commun 8:15985. https://doi.org/10.1038/ncomms15985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dantan N, Frenzel W, Küppers S (2000) Determination of water traces in various organic solvents using Karl Fischer method under FIA conditions. Talanta 52(1):101–109. https://doi.org/10.1016/S0039-9140(00)00328-3

    Article  CAS  PubMed  Google Scholar 

  12. Xu BQ, Rao CQ, Cui SF, Wang J, Wang JL, Liu LP (2018) Determination of trace water contents of organic solvents by gas chromatography-mass spectrometry-selected ion monitoring. J Chromatogr A 1570:109–115. https://doi.org/10.1016/j.chroma.2018.07.068

    Article  CAS  PubMed  Google Scholar 

  13. Guo S, Xie X, Huang L, Huang W (2016) Sensitive water probing through nonlinear photon Upconversion of lanthanide-doped nanoparticles. ACS Appl Mater Interfaces 8(1):847–853. https://doi.org/10.1021/acsami.5b10192

    Article  CAS  PubMed  Google Scholar 

  14. Liu S, De G, Xu Y, Wang X, Liu Y, Cheng C, Wang J (2018) Size, phase-controlled synthesis, the nucleation and growth mechanisms of NaYF4:Yb/Er nanocrystals. J Rare Earths 36(10):1060–1066. https://doi.org/10.1016/j.jre.2018.01.025

    Article  CAS  Google Scholar 

  15. Wang X, Yang J, Sun X, Yu H, Yan F, Meguellati K, Cheng Z, Zhang H, Yang YW (2018) Facile surface functionalization of upconversion nanoparticles with phosphoryl pillar[5] arenes for controlled cargo release and cell imaging. Chem Commun (Camb) 54(92):12990–12993. https://doi.org/10.1039/c8cc08168a

    Article  CAS  Google Scholar 

  16. Dai Y, Bi H, Deng X, Li C, He F, Ma P, Yang P, Lin J (2017) 808 nm near-infrared light controlled dual-drug release and cancer therapy in vivo by upconversion mesoporous silica nanostructures. J Mater Chem B 5(11):2086–2095. https://doi.org/10.1039/c7tb00224f

    Article  CAS  Google Scholar 

  17. Zhang T, Lin H, Cui L, An N, Tong R, Chen Y, Yang C, Li X, Liu J, Qu F (2016) Near infrared light triggered reactive oxygen species responsive upconversion nanoplatform for drug delivery and photodynamic therapy. Eur J Inorg Chem 2016(8):1206–1213. https://doi.org/10.1002/ejic.201501320

    Article  CAS  Google Scholar 

  18. Zhang Y, Yu Z, Li J, Ao Y, Xue J, Zeng Z, Yang X, Tan TT (2017) Ultrasmall-superbright neodymium-upconversion nanoparticles via energy migration manipulation and lattice modification: 808 nm-activated drug release. ACS Nano 11(3):2846–2857. https://doi.org/10.1021/acsnano.6b07958

    Article  CAS  PubMed  Google Scholar 

  19. Yang G, Yang D, Yang P, Lv R, Li C, Zhong C, He F, Gai S, Lin J (2015) A single 808 nm near-infrared light-mediated multiple imaging and photodynamic therapy based on titania coupled upconversion nanoparticles. Chem Mater 27(23):7957–7968. https://doi.org/10.1021/acs.chemmater.5b03136

    Article  CAS  Google Scholar 

  20. Xu F, Zhao Y, Hu M, Zhang P, Kong N, Liu R, Liu C, Choi SK (2018) Lanthanide-doped core-shell nanoparticles as a multimodality platform for imaging and photodynamic therapy. Chem Commun (Camb) 54(68):9525–9528. https://doi.org/10.1039/c8cc05057k

    Article  CAS  Google Scholar 

  21. Ding X, Liu J, Liu D, Li J, Wang F, Li L, Wang Y, Song S, Zhang H (2017) Multifunctional core/satellite polydopamine@Nd3+−sensitized upconversion nanocomposite: a single 808 nm near-infrared light-triggered theranostic platform for in vivo imaging-guided photothermal therapy. Nano Res 10(10):3434–3446. https://doi.org/10.1007/s12274-017-1555-x

    Article  CAS  Google Scholar 

  22. Wang X, Valiev RR, Ohulchanskyy TY, Agren H, Yang C, Chen G (2017) Dye-sensitized lanthanide-doped upconversion nanoparticles. Chem Soc Rev 46(14):4150–4167. https://doi.org/10.1039/c7cs00053g

    Article  CAS  PubMed  Google Scholar 

  23. Chen G, Damasco J, Qiu H, Shao W, Ohulchanskyy TY, Valiev RR, Wu X, Han G, Wang Y, Yang C, Agren H, Prasad PN (2015) Energy-cascaded Upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett 15(11):7400–7407. https://doi.org/10.1021/acs.nanolett.5b02830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yin D, Liu Y, Tang J, Zhao F, Chen Z, Zhang T, Zhang X, Chang N, Wu C, Chen D, Wu M (2016) Huge enhancement of upconversion luminescence by broadband dye sensitization of core/shell nanocrystals. Dalton Trans 45(34):13392–13398. https://doi.org/10.1039/c6dt01187j

    Article  CAS  PubMed  Google Scholar 

  25. Hazra C, Ullah S, Serge Correales YE, Caetano LG, Ribeiro SJL (2018) Enhanced NIR-I emission from water-dispersible NIR-II dye-sensitized core/active shell upconverting nanoparticles. J Mater Chem C 6(17):4777–4785. https://doi.org/10.1039/c8tc00335a

    Article  CAS  Google Scholar 

  26. Zou X, Xu M, Yuan W, Wang Q, Shi Y, Feng W, Li F (2016) A water-dispersible dye-sensitized upconversion nanocomposite modified with phosphatidylcholine for lymphatic imaging. Chem Commun (Camb) 52(91):13389–13392. https://doi.org/10.1039/c6cc07180e

    Article  CAS  Google Scholar 

  27. Xu J, Gulzar A, Liu Y, Bi H, Gai S, Liu B, Yang D, He F, Yang P (2017) Integration of IR-808 sensitized upconversion nanostructure and MoS2 nanosheet for 808 nm NIR light triggered phototherapy and bioimaging. Small 13(36):1701841. https://doi.org/10.1002/smll.201701841

    Article  CAS  Google Scholar 

  28. Andresen E, Resch-Genger U, Schaferling M (2019) Surface modifications for photon-Upconversion-based energy-transfer Nanoprobes. Langmuir 35(15):5093–5113. https://doi.org/10.1021/acs.langmuir.9b00238

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by natural science foundation of China (21675002), the education commission natural science foundation of Anhui Province (KJ2017ZD25), foundation for innovation team of bioanalytical chemistry and Special and Excellent Research Fund of Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lun Wang or Hongqi Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1620 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhao, M., Wang, L. et al. Core-shell upconversion nanoparticles of type NaGdF4:Yb,Er@NaGdF4:Nd,Yb and sensitized with a NIR dye are a viable probe for luminescence determination of the fraction of water in organic solvents. Microchim Acta 186, 630 (2019). https://doi.org/10.1007/s00604-019-3744-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3744-7

Keywords

Navigation